The TOR and Jak/STAT signal pathways are highly conserved from Drosophila to mammals, but it is unclear whether they interact during development. The proline-rich Akt substrate of 40 kDa (PRAS40) mediates the TOR signal pathway through regulation of TORC1 activity, but its functions in TORC1 proved in cultured cells are controversial. The Drosophila gene Lobe (L) encodes the PRAS40 ortholog required for eye cell survival. L mutants exhibit apoptosis and eye-reduction phenotypes. It is unknown whether L regulates eye development via regulation of TORC1 activity. We found that reducing the L level, by hypomorphic L mutation or heterozygosity of the null L mutation, resulted in ectopic expression of unpaired (upd), which is known to act through the Jak/STAT signal pathway to promote proliferation during eye development. Unexpectedly, when L was reduced, decreasing Jak/STAT restored the eye size, whereas increasing Jak/STAT prevented eye formation. We found that ectopic Jak/STAT signaling and apoptosis are mutually dependent in L mutants, indicating that L reduction makes Jak/STAT signaling harmful to eye development. In addition, our genetic data suggest that TORC1 signaling is downregulated upon L reduction, supporting the idea that L regulates eye development through regulation of TORC1 activity. Similar to L reduction, decreasing TORC1 signaling by dTOR overexpression results in ectopic upd expression and apoptosis. A novel finding from our data is that dysregulated TORC1 signaling regulates the expression of upd and the function of the Jak/STAT signal pathway in Drosophila eye development.
The Janus kinase (JAK) signal transducer and activator of transcription (STAT) pathway is one of the main signaling pathways in eukaryotic cells. This pathway is used during diverse growth and developmental processes in multiple tissues to control cell proliferation, differentiation, survival, and apoptosis. In addition to its role during development, the JAK/STAT pathway has also been implicated in tumorigenesis. Drosophila melanogaster is a powerful genetic tool, and its eyes have been used extensively as a platform to study signaling pathways. Many reports have demonstrated that the JAK/STAT pathway plays pleiotropic roles in Drosophila eye development. Its functions and activation are decided by its interplay with other signal pathways and the epigenetic status. In this review, we focus on the functions and regulation of the JAK/STAT pathway during eye development and provide some insights into the study of this pathway in tumorigenesis. Developmental Dynamics 239:2522–2533, 2010. © 2010 Wiley-Liss, Inc.
Dendritic morphology is inextricably linked to neuronal function. Systematic large-scale screens combined with genetic mapping have uncovered several mechanisms underlying dendrite morphogenesis. However, a comprehensive overview of participating molecular mechanisms is still lacking. Here, we conducted an efficient clonal screen using a collection of mapped P-element insertions that were previously shown to cause lethality and eye defects in Drosophila melanogaster. Of 280 mutants, 52 exhibited dendritic defects. Further database analyses, complementation tests, and RNA interference validations verified 40 P-element insertion genes as being responsible for the dendritic defects. Twenty-eight mutants presented severe arbor reduction, and the remainder displayed other abnormalities. The intrinsic regulators encoded by the identified genes participate in multiple conserved mechanisms and pathways, including the protein folding machinery and the chaperonin-containing TCP-1 (CCT) complex that facilitates tubulin folding. Mutant neurons in which expression of CCT4 or CCT5 was depleted exhibited severely retarded dendrite growth. We show that CCT localizes in dendrites and is required for dendritic microtubule organization and tubulin stability, suggesting that CCT-mediated tubulin folding occurs locally within dendrites. Our study also reveals novel mechanisms underlying dendrite morphogenesis. For example, we show that Drosophila Nogo signaling is required for dendrite development and that Mummy and Wech also regulate dendrite morphogenesis, potentially via Dppand integrin-independent pathways. Our methodology represents an efficient strategy for identifying intrinsic dendrite regulators, and provides insights into the plethora of molecular mechanisms underlying dendrite morphogenesis.
LINC complexes connect the inner and outer nuclear membrane (ONM) to transduce nucleocytoskeletal force. Ding et al. identify an ONM protein, Kuduk/TMEM258, which modulates the quality of LINC complexes and regulates the nuclear envelope architecture, nuclear positioning, and the development of ovarian follicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.