Reactive oxygen species (ROS) have important functions in cell signaling and, when present at overly high levels, may cause oxidation of important biological molecules. Kinetic models to study diffusion of ROS inside of mitochondria often assume dynamics similar to that in solution. However, it is well-known that separation of proteins in the cytosol or inside of mitochondria, where ROS are most predominant, can be smaller than 1 nm. Diffusion of small molecules can be better regarded as a percolation process. In this article, we report results of diffusivity and residence of water and hydrogen peroxide in the proximity of proteins. In carrying out this study, we found some issues with the conventional way of computing residence times by means of survival time correlation functions. The main problem is that particles remaining on the surface of a protein for long times and for which one has very poor statistics contribute significantly to the short time behavior of the survival time correlation function. We mathematically describe this problem and propose methodology to overcome it.
In this article, we characterize the behavior of water on the surface of a diverse group of carbohydrates and attempt to determine the role of saccharide size, linkage, and branching as well as secondary structure on the dynamics and structure of water at the surface. In order to better understand the similarities and differences in the behavior of the solvent on the carbohydrate surface, we explore residence times, rotational correlation functions, local solvent occupancy numbers, and diffusivities. We find that due to the differences in secondary structure water residence times are longer and translational and rotational dynamics are retarded when in contact with wide helices and branched sugars. In the case of extended helices and smaller oligosaccharides, water dynamics is faster and less hindered. This indicates that branching, the type of linkage between monomers, and the anomeric configuration all play a major role in determining the structure and dynamics of water on the surface of carbohydrates.
The difference in lifetime with respect to hydrolysis of two covalent syalosyl-enzyme intermediates of two difluorinated sialic acid analogues ( 1 and 2) bound to Trypanosoma rangeli sialidase is rationalized based on quantum mechanical calculations. The two intermediates differ only in a single functional group, acetamide in the sialidase- 1 complex and hydroxyl in the sialidase- 2 complex. It is shown that the acetamide group, which is also present in the natural substrate, increases the pKa of a catalytic base (Asp60) through electrostatic repulsion with the carbonyl oxygen on the ligand. This oxygen is absent in 2, resulting in a less basic Asp60 residue and, hence, a longer lifetime of the silaidase- 2 complex. Presumably, the lifetime of a sialidase inhibitor complex could be increased further by substituents that stabilize the negative charge on (and lowers the pKa value of) Asp60 in T. rangeli sialidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.