A facile surfactant-assisted bottom-up synthetic method to prepare a series of freestanding ultrathin 2D M-TCPP (M = Zn, Cu, Cd or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin) nanosheets with a thickness of sub-10 nm is developed. As a proof-of-concept application, some of them are successfully used as new platforms for DNA detection. The Cu-TCPP nanosheet-based sensor shows excellent fluorescent sensing performance and is used for the simultaneous detection of multiple DNA targets.
Two-dimensional (2D) metal-organic framework (MOF) nanosheets are attracting increasing research attention due to their unique properties originating from their ultrathin thickness, large surface area and high surface-to-volume atom ratios. Many great advances have been made in the synthesis and application of 2D MOF nanosheets over the past few years. In this review, we summarize the recent advances in the synthesis of 2D MOF nanosheets by using top-down methods, e.g. sonication exfoliation, mechanical exfoliation, Li-intercalation exfoliation and chemical exfoliation, and bottom-up methods, i.e. interfacial synthesis, three-layer synthesis, surfactant-assisted synthesis, modulated synthesis, and sonication synthesis. In addition, the recent progress in 2D MOF nanosheet-based nanocomposites is also briefly introduced. The potential applications of 2D MOF nanosheets in gas separation, energy conversion and storage, catalysis, sensors and biomedicine are discussed. Finally, we give our personal insights into the challenges and opportunities for the future research of 2D MOF nanosheets and their composites.
The design and development of a smart bioadhesive hydrogel sealant with self-healing and excellent antibacterial activity to achieve high wound closure effectiveness and post-wound-closure care is highly desirable in clinical applications. In this work, a series of adhesive antioxidant antibacterial self-healing hydrogels with promising traits were designed through dual-dynamic-bond cross-linking among ferric iron (Fe), protocatechualdehyde (PA) containing catechol and aldehyde groups and quaternized chitosan (QCS) to enable the closure of skin incisions and promotion of methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. The dual-dynamic-bond cross-linking of a pHsensitive coordinate bond (catechol−Fe) and dynamic Schiff base bonds with reversible breakage and re-formation equips the hydrogel with excellent autonomous healing and on-demand dissolution or removal properties. Additionally, the hydrogel presents injectability, good biocompatibility and antibacterial activity, multifunctional adhesiveness, and hemostasis as well as NIR responsiveness. The in vivo evaluation in a rat skin incision model and infected full-thickness skin wound model revealed the high wound closure effectiveness and post-wound-closure care of the smart hydrogels, demonstrating its great potential in dealing with skin incisions and infected full-thickness skin wounds.
3+ coordination cross-linked poly(glycerol sebacate)-copoly(ethylene glycol)-g-catechol and quadruple hydrogen bonding crosslinked ureido-pyrimidinone modified gelatin. It possesses excellent anti-oxidation, NIR/pH responsiveness, and shape adaptation. Additionally, the hydrogel presents rapid self-healing, good tissue adhesion, degradability, photothermal antibacterial activity, and NIR irradiation and/or acidic solution washing-assisted removability. In vivo experiments prove that the hydrogels have good hemostasis of skin trauma and high killing ratio for methicillin-resistant staphylococcus aureus (MRSA) and achieve better wound closure and healing of skin incision than medical glue and surgical suture. In particular, they can significantly promote full-thickness skin defect wound healing by regulating inflammation, accelerating collagen deposition, promoting granulation tissue formation, and vascularization. These on-demand dissolvable and antioxidant physical double-network hydrogel adhesives are excellent multifunctional dressings for treating in vivo MRSA infection, wound closure, and wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.