BackgroundEpidemiological surveys and studies with animal models have established a relationship between maternal stress and affective disorders in their offspring. However, whether maternal depression before pregnancy influences behaviour and related neurobiological mechanisms in the offspring has not been studied.ResultsA social defeat stress (SDS) maternal rat model was established using the resident-intruder paradigm with female specific pathogen-free Wistar rats and evaluated with behavioural tests. SDS maternal rats showed a significant reduction in sucrose preference and locomotor and exploratory activities after 4 weeks of stress. In the third week of the experiment, a reduction in body weight gain was observed in SDS animals. Sucrose preference, open field, the elevated-plus maze, light–dark box, object recognition, the Morris water maze, and forced swimming tests were performed using the 2-month-old male offspring of the female SDS rats. Offspring subjected to pre-gestational SDS displayed enhanced anxiety-like behaviours, reduced exploratory behaviours, reduced sucrose preference, and atypical despair behaviours. With regard to cognition, the offspring showed significant impairments in the retention phase of the object recognition test, but no effect was observed in the acquisition phase. These animals also showed impairments in recognition memory, as the discrimination index in the Morris water maze test in this group was significantly lower for both 1 h and 24 h memory retention compared to controls. Corticosterone, adrenocorticotropic hormone, and monoamine neurotransmitters levels were determined using enzyme immunoassays or radioimmunoassays in plasma, hypothalamus, left hippocampus, and left prefrontal cortex samples from the offspring of the SDS rats. These markers of hypothalamic–pituitary–adrenal axis responsiveness and the monoaminergic system were significantly altered in pre-gestationally stressed offspring. Brain-derived neurotrophic factor (BDNF), cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and serotonin transporter (SERT) protein levels were evaluated using western blotting with right hippocampus and right prefrontal cortex samples. Expression levels of BDNF, pCREB, and SERT in the offspring were also altered in the hippocampus and in the prefrontal cortex; however, there was no effect on CREB.ConclusionWe conclude that SDS before pregnancy might induce depressive-like behaviours, cognitive deficits, and neurobiological alterations in the offspring.
Objective: To explore the targets, signal regulatory networks and mechanisms involved in Baixiangdan (BXD) capsule regulation of premenstrual dysphoric disorder (PMDD) at the gene transcription level, since the etiology and pathogenesis of PMDD are not well understood.Methods: The PMDD rat model was prepared using the resident-intruder paradigm. The rats were tested for aggressive behavior, and those with scores in the lowest 30% were used as controls, while rats with scores in the highest 30% were divided into a PMDD model group, BXD administration group and fluoxetine administration group, which were evaluated with open-field tests and aggressive behavior tests. We also analyzed gene expression profiles in the hippocampus for each group, and verified differential expression of genes by real-time PCR.Results: Before and after BXD or fluoxetine administration, scores in the open-field test exhibited no significant differences. The aggressive behavior of the PMDD model rats was improved to a degree after administration of both substances. Gene chip data indicated that 715 genes were differentially expressed in the control and BXD groups. Other group-to-group comparisons exhibited smaller numbers of differentially expressed genes. The effective targets of both drugs included the Htr2c, Cdh3, Serpinb1a, Ace, Trpv4, Cacna1a, Mapk13, Mapk8, Cyp2c13, and Htr1a genes. The results of real-time PCR tests were in accordance with the gene chip data. Based on the target genes and signaling pathway network analysis, we have elaborated the impact and likely mechanism of BXD in treating PMDD and premenstrual irritability.Conclusion: Our work contributes to the understanding of PMDD pathogenesis and the mechanisms of BXD treatment. We speculate that the differentially expressed genes could participate in neuroactive ligand-receptor interactions, mitogen-activated protein kinase, calcium, and gamma-aminobutyric acid signal transduction.
The aim of the present study was to investigate the genes associated with ‘anger-in’ (tendency to suppress anger) and ‘anger-out’ (tendency to express anger through verbal or physical means) emotions in humans. Wistar rats were divided into five groups (n=10/group), based on the type of model and the Chinese medicinal formulation administered, and the rat models were established. The five groups were as follows: Normal control (control), anger-in model (AIM), anger-in Jingqianshu-administered (AIA), anger-out model (AOM) and anger-out Jingqianping-administered (AOA). Open-field, resident-intruder and aggressive behavior tests were carried out, as well as gene expression analysis, reverse transcription-quantitative polymerase chain reaction and western blot analyses. The body weights of the rats in the AIM and AOM groups were significantly lower than those of the control group rats. The open-field test indicated that the scores in the AOM group were significantly higher (P<0.05) than those in the AIM group. The aggression scores of the rats in the AOM group were significantly higher than those of the AIM group rats. Jingqianshu and Jingqianping granules attenuated the behavioral changes of the rats. 5-Htr2C, GABABR2 and 5-Htr3B were associated with anger-in and anger-out emotions. Jingqianping and Jingqianshu granules attenuated the changes in the mRNA expression of 5-Htr2C, GABABR2 and 5-Htr3B, as indicated by RT-qPCR, and showed similar effects on protein expression, as demonstrated by western blot analysis. The present study demonstrated that the anger-in and anger-out emotions of rats are closely associated with 5-Htr2C, GABABR2 and 5-Htr3B genes, and that Jingqianshu and Jingqianping granules attenuate the abnormal behaviors of model rats. These findings may be useful for the treatment of emotional disorders associated with anger.
Tubeimoside-1 (TBMS-1), a natural triterpenoid saponin found in traditional Chinese herbal medicine Bolbostemmatis Rhizoma, is present in numerous Chinese medicine preparations. This review aims to comprehensively describe the pharmacology, pharmacokinetics, toxicity and targeting preparations of TBMS-1, as well the therapeutic potential for cancer treatement. Information concerning TBMS-1 was systematically collected from the authoritative internet database of PubMed, Web of Science, and China National Knowledge Infrastructure applying a combination of keywords involving “tumor,” “pharmacokinetics,” “toxicology,” and targeting preparations. New evidence shows that TBMS-1 possesses a remarkable inhibitory effect on the tumors of the respiratory system, digestive system, nervous system, genital system as well as other systems in vivo and in vitro. Pharmacokinetic studies reveal that TBMS-1 is extensively distributed in various tissues and prone to degradation by the gastrointestinal tract after oral administration, causing a decrease in bioavailability. Meanwhile, several lines of evidence have shown that TBMS-1 may cause adverse and toxic effects at high doses. The development of liver-targeting and lung-targeting preparations can reduce the toxic effect of TBMS-1 and increase its efficacy. In summary, TBMS-1 can effectively control tumor treatment. However, additional research is necessary to investigate in vivo antitumor effects and the pharmacokinetics of TBMS-1. In addition, to reduce the toxicity of TBMS-1, future research should aim to modify its structure, formulate targeting preparations or combinations with other drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.