Abstract-Due to the open nature of a sensor network, it is relatively easy for an adversary to eavesdrop and trace packet movement in the network in order to capture the receiver physically. After studying the adversary's behavior patterns, we present countermeasures to this problem. We propose a locationprivacy routing protocol (LPR) that is easy to implement and provides path diversity. Combining with fake packet injection, LPR is able to minimize the traffic direction information that an adversary can retrieve from eavesdropping. By making the directions of both incoming and outgoing traffic at a sensor node uniformly distributed, the new defense system makes it very hard for an adversary to perform analysis on locally gathered information and infer the direction to which the receiver locates. We evaluate our defense system based on three criteria: delivery time, privacy protection strength, and energy cost. The simulation results show that LPR with fake packet injection is capable of providing strong protection for the receiver's location privacy. Under similar energy cost, the safe time of the receiver provided by LPR is much longer than other methods, including Phantom routing [1] and DEFP [2]. The performance of our system can be tuned through a couple of parameters that determine the tradeoff between energy cost and the strength of location-privacy protection.
We demonstrate that CSMA/CA networks, including IEEE 802.11 networks, exhibit severe fairness problem in many scenarios, where some hosts obtain most of the channel's bandwidth while others starve. Most existing solutions require nodes to overhear transmissions made by contending nodes and, based on the overheard information, adjust local rates to achieve fairness among all contending links. Their underlying assumption is that transmissions made by contending nodes can be overheard. However, this assumption holds only when the transmission range is equal to the carrier sensing range, which is not true in reality. As our study reveals, the overhearing-based solutions, as well as several non-overhearing AIMD solutions, cannot achieve MAC-layer fairness in various settings. We propose a new rate control protocol, called PISD (Proportional Increase Synchronized multiplicative Decrease). Without relying on overhearing, it provides fairness in CSMA/CA networks, particularly IEEE 802.11 networks, by using only local information and performing localized operations. It combines several novel rate control mechanisms, including synchronized multiplicative decrease, proportional increase, and background transmission. We prove that PISD converges and achieves (weighted) fairness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.