Background Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized.ResultsWe purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d+ B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway.ConclusionsWe purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d+ Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models.
Anthracnose caused by Colletotrichum leads to a tremendous post-harvest mango loss. While chemical fungicides are applied to control anthracnose, natural alternatives are preferred due to food safety and environmental concerns. Pomelo extract (PE) exhibits a broad spectrum of antimicrobial activities; however, its effect against anthracnose is unknown. Here we investigated the chemical profile of PE using GC-MS and the anti-anthracnose activity of PE using in vitro and in vivo assays. We also evaluated the impact of storage temperature (0°, 5°, 10°, 20°, −20°, and −80 °C) and light conditions on the composition and antifungal activity of PE. We found that PE inhibited C. gloeosporioides in vitro with an IC50 of 3.2 mL L−1. Applying chitosan-based coating incorporated with 20 mL L−1 PE significantly suppressed anthracnose in post-harvest ‘Keitt’ mango. A storage temperature below 5 °C substantially preserved major compounds and the antifungal activity of PE after 6 m of storage. Finally, we showed that applying d-limonene, the key constituent of PE, inhibited C. gloeosporioides in vitro (IC50: 10.9 mM) and suppressed anthracnose in vivo. In conclusion, we demonstrated that the application of PE and d-limonene are sustainable methods for anthracnose control in post-harvest crops and established the preservation protocol for PE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.