A block copolymer with diselenide bonds in the polymer backbone was reported. This block copolymer was capable of forming micellar aggregates that were responsive to redox stimuli. Compared with other redox responsive aggregates, this type of diselenide-containing block copolymer aggregates could be responsive to both oxidants and reductants even in a solution with a very low concentration under mild conditions.
Adaptability of soybean [Glycine max (L.) Merr.] to a wide range of latitudes is attributed to the natural variation in the major genes and quantitative trait loci (QTL) that control flowering time and maturity. Identification of novel genes and understanding their molecular basis is critical to improving soybean productivity. We identified a new locus conditioning days to flowering and maturity that was detected in hybrid progeny between cultivated and wild soybeans. A backcross was made between the recurrent parent Tokei 780 and two early-flowering recombinant inbred lines (rILs; from the cross Tokei 780 × Hidaka 4, a wild soybean accession, all of which possessed an identical genotype at the major four maturity loci, E1 to E4). The segregation patterns observed in the F 2 and F 3 progeny derived from the two crosses revealed that early-flowering was controlled by a single dominant gene. The gene was fine-mapped to a 245-kb interval between markers M5 and M7 on Gm16. A tagging marker ID1 was significantly associated with the variation in days to flowering (0.82, p < 0.01) and maturity (0.76, p < 0.01) in the F 2 population. The new early-flowering gene and its tagging marker are very useful for molecular breeding towards early maturity and stable productivity of soybean under high-latitude environments. The gene symbol E9e9 has been assigned. E9E9 results in early maturity and e9e9 results in late maturity.
FLOWERING LOCUS T (FT) is the key flowering integrator in Arabidopsis (Arabidopsis thaliana), and its homologs encode florigens in many plant species regardless of their photoperiodic response. Two FT homologs, GmFT2a and GmFT5a, are involved in photoperiod-regulated flowering and coordinately control flowering in soybean. However, the molecular and genetic understanding of the roles played by GmFT2a and GmFT5a in photoperiod-regulated flowering in soybean is very limited. In this study, we demonstrated that GmFT2a and GmFT5a were able to promote early flowering in soybean by overexpressing these two genes in the soybean cultivar Williams 82 under noninductive long-day (LD) conditions. The soybean homologs of several floral identity genes, such as GmAP1, GmSOC1 and GmLFY, were significantly upregulated by GmFT2a and GmFT5a in a redundant and differential pattern. A bZIP transcription factor, GmFDL19, was identified as interacting with both GmFT2a and GmFT5a, and this interaction was confirmed by yeast two-hybridization and bimolecular fluorescence complementation (BiFC). The overexpression of GmFDL19 in soybean caused early flowering, and the transcription levels of the flowering identity genes were also upregulated by GmFDL19, as was consistent with the upregulation of GmFT2a and GmFT5a. The transcription of GmFDL19 was also induced by GmFT2a. The results of the electrophoretic mobility shift assay (EMSA) indicated that GmFDL19 was able to bind with the cis-elements in the promoter of GmAP1a. Taken together, our results suggest that GmFT2a and GmFT5a redundantly and differentially control photoperiod-regulated flowering in soybean through both physical interaction with and transcriptional upregulation of the bZIP transcription factor GmFDL19, thereby inducing the expression of floral identity genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.