This work demonstrates a sensitive directional anemometer that is based on a pendulum-type of anisotropic flat-clad tapered fiber Michelson interferometer (AFCTFMI). The AFCTFMI is fabricated by tapering an anisotropic flat-cladding fiber to establish structural anisotropy, and enables the sensing of the direction and magnitude of flowing air (wind). Wavelength shifts and fringes visibility of the measured interference fringes are correlated with the magnitude and furthermore the direction of the wind. Experimental results agree closely with the theoretical analysis. The directional anemometer can simultaneously and effectively indicate the direction, and sensitively measure the magnitude of wind.
The experimental detail of a random lasing action from dye-doped nematic liquid crystals (LCs) inside single-core capillaries with a core diameter below 50 m was investigated. The resonant characteristics, including the number of emission spikes, the full width at half maximum (FWHM), and the estimated Q-factor, were shown to depend on the core diameter of a capillary. In contrast with a capillary with a larger core diameter and having various emission spikes, only three emission spikes were excited from a capillary with a 10-m core diameter, owing to the smaller effective area of the pump beam. However, the decrease in the amplitude of emission spikes and the broadening of the linewidth accompanying the higher lasing threshold from a capillary with a 50-m core diameter are attributed to the decrease in the pump fluence and the increase in the scattering loss, respectively. In this paper, a random laser (RL) with the shortest FWHM emission peak of about 0.47 nm and the highest Q-factor of about 1268 was generated from the capillary with a 20-m core diameter. By means of temperature adjustment, the emission spectra of the RL that is related to the birefringence and alignment ordering of the LC molecules inside a capillary with a 20-m core diameter can be effectively altered. Our experiments show that the RL, revealing adjustable output emission spectra, can be a promising device in using remote sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.