Rock art is a widespread cultural heritage, representing an immovable element of the material culture created on natural rocky supports. Paintings and petroglyphs can be found within caves and rock shelters or in open-air contexts and for that reason they are not isolated from the processes acting at the Earth surface. Consequently, rock art represents a sort of ecosystem because it is part of the complex and multidirectional interplay between the host rock, pigments, environmental parameters, and microbial communities. Such complexity results in several processes affecting rock art; some of them contribute to its destruction, others to its preservation. To understand the effects of such processes an interdisciplinary scientific approach is needed. In this contribution, we discuss the many processes acting at the rock interface—where rock art is present—and the multifaceted possibilities of scientific investigations—non-invasive or invasive—offered by the STEM disciplines. Finally, we suggest a sustainable approach to investigating rock art allowing to understand its production as well as its preservation and eventually suggest strategies to mitigate the risks threatening its stability.
The open rock shelter of Yabelo in Ethiopia hosts diverse Holocene paintings of great cultural importance. The paintings are characterized by the presence of different mineral coatings, whose features have not been studied yet. Our goal was to understand whether different rock samples from the Yabelo paintings collected in close proximity may reveal coatings with different minerology and biology. Thus, elemental analyses combined with microscopic and molecular investigations were performed on two coatings, one whitish (sample 1) and one reddish (sample 2). Although both samples were dominated by heterotrophic bacteria, the two coatings showed distinct mineralogical and microbiological characteristics. Sample 1 contained higher amounts of Ca and P than sample 2, which was likely related to the presence of organic matter. Sample 1 hosted bacterial genera that are potentially involved in biomineralization processes, metal redox cycles and metal resistance. In contrast, sample 2 showed mainly pathogenic and commensal bacteria that are characteristic of animal and human microbiota, and other microorganisms that are involved in nitrogen and metal biogeochemical cycles. Overall, our results indicated that the bacterial communities were particular to the coating mineralogy, suggesting a potential role of the biological components in the crust genesis.
Pigment-based color is one of the most important phenotypic traits of biofilms at the mineral–air interface (subaerial biofilms, SABs), because it reflects the physiology of the microbial community. Because color is the hallmark of all SABs, we argue that pigment-based color could convey the mechanisms that drive microbial adaptation and coexistence across different terrestrial environments and link phenotypic traits to community fitness and ecological dynamics. Within this framework, we present the most relevant microbial pigments at the mineral–air interface and discuss some of the evolutionary landscapes that necessitate pigments as adaptive strategies for resource allocation and survivability. We report several pigment features that reflect SAB communities’ structure and function, as well as pigment ecology in the context of microbial life-history strategies and coexistence theory. Finally, we conclude the study of pigment-based ecology by presenting its potential application and some of the key challenges in the research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.