Nω-Carboxymethyl-arginine (CMA), Nω-carboxyethyl-arginine (CEA) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) have been identified as L-arginine-derived advanced glycation end products (AGEs) formed by non-enzymatic reactions between reducing sugars such as glucose and amino groups in proteins. These AGEs are structurally analogous to endogenous inhibitors of nitric oxide synthases (NOS) including NG-monomethyl-L-arginine (L-NMMA) and asymmetric NG,NG-dimethyl-L-arginine (ADMA). Increased plasma levels of these NOS inhibitors, and thus impaired generation of NO in vivo has been associated with the pathogenesis of vascular complications such as kidney failure and atherosclerosis. For these reasons we examined whether L-arginine-derived AGEs inhibit the activities of three L-arginine metabolizing enzymes including three isoforms of NOS (endothelium, neuronal and inducible NOS), dimethylarginine dimethylaminohydrolase (DDAH) that catalyzes the hydrolytic degradation of L-NMMA and ADMA to L-citrulline, and arginase that modulates intracellular L-arginine bioavailability. We found that AGEs inhibited the in vitro activities of endothelium type NOS weakly (IC50 values of CMA, CEA and MG-H1 were 830, 3870 and 1280 µM, respectively) and were also potential endogenous inhibitors for arginase (IC50 values of CMA and CML were 1470 and 1060 µM), but were poor inhibitors for DDAH. These results suggest that the tested L-arginine- and L-lysine-derived AGEs appear not to impair NO biosynthesis directly.
The cholesterol ozonolysis products secosterol-A and its aldolization product secosterol-B were recently detected in human atherosclerotic tissues and brain specimens, and have been postulated to play pivotal roles in the pathogenesis of atherosclerosis and neurodegenerative diseases. We examined several oxidized cholesterol metabolites including secosterol-A, secosterol-B, 25-hydroxycholesterol, 5β,6β-epoxycholesterol and 7-ketocholesterol for their effects on the activities of three nitric oxide synthases. In contrast to other oxidized metabolites, secosterol-A was found to be a potent inhibitor against the neuronal- and endothelial-type, but not the inducible-type nitric oxide synthase, with IC50 values of 22 ± 1 and 50 ± 5 µM, respectively. The calmodulin-binding regions of the neuronal- and endothelial-nitric oxide synthases contain lysine residues which are not present in the inducible-type nitric oxide synthase. Secosterol-A modifies proteins through the formation of a Schiff base with the lysine epsilon-amino group. It is possible that secosterol-A modifies lysine residues of constitutive nitric oxide synthases, leading to the inhibition of enzymatic activities. As nitric oxide is a critical signaling molecule in vascular function and in long-term potentiation, its reduced production through inhibition of constitutive nitric oxide synthases by secosterol-A may contribute to the development of atherosclerosis and memory impairment in particular neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.