In China, upper-level healthcare (ULHC) and lower-level healthcare (LLHC) provide different public medical and health services. Only when these two levels of healthcare resources are distributed equally and synergistically can the public’s demands for healthcare be met fairly. Despite a number of previous studies having analysed the spatial distribution of healthcare and its determinants, few have evaluated the differences in spatial equity between ULHC and LLHC and investigated their institutional, geographical and socioeconomic influences and spillover effects. This study aims to bridge this gap by analysing panel data on the two levels of healthcare resources in 31 Chinese provinces covering the period 2003–2015 using Moran’s I models and dynamic spatial Durbin panel models (DSDMs). The results indicate that, over the study period, although both levels of healthcare resources improved considerably in all regions, spatial disparities were large. The spatio-temporal characteristics of ULHC and LLHC differed, although both levels were relatively low to the north-west of the Hu Huanyong Line. DSDM analysis revealed direct and indirect effects at both short-and long-term scales for both levels of healthcare resources. Meanwhile, the influencing factors had different impacts on the different levels of healthcare resources. In general, long-term effects were greater for ULHC and short-term effects were greater for LLHC. The spillover effects of ULHC were more significant than those of LLHC. More specifically, industrial structure, traffic accessibility, government expenditure and family healthcare expenditure were the main determinants of ULHC, while industrial structure, urbanisation, topography, traffic accessibility, government expenditure and family healthcare expenditure were the main determinants of LLHC. These findings have important implications for policymakers seeking to optimize the availability of the two levels of healthcare resources.
Recently, support vector machines, a supervised learning algorithm, have been widely used in the scope of credit risk management. However, noise may increase the complexity of the algorithm building and destroy the performance of classifier. In our work, we propose an ensemble support vector machine model to solve the risk assessment of supply chain finance, combined with reducing noises method. The main characteristics of this approach include that (1) a novel noise filtering scheme that avoids the noisy examples based on fuzzy clustering and principal component analysis algorithm is proposed to remove both attribute noise and class noise to achieve an optimal clean set, and (2) support vector machine classifiers, based on the improved particle swarm optimization algorithm, are seen as component classifiers. Then, we obtained the final classification results by combining finally individual prediction through AdaBoosting algorithm on the new sample set. Some experiments are applied on supply chain financial analysis of China’s listed companies. Results indicate that the credit assessment accuracy can be increased by applying this approach.
Micro-expressions are unconscious, faint, short-lived expressions that appear on the faces. It can make people's understanding of psychological state and emotion more accurate. Therefore, micro-expression recognition is particularly important in psychotherapy and clinical diagnosis, which has been widely studied by researchers for the past decades. In practical applications, the micro-expression recognition samples used in training and testing are from different databases, which causes the feature distribution between the training and testing samples to be different to a large extent, resulting in a drastic decrease in the performance of the traditional micro-expression recognition methods. However, most of the existing cross-database micro-expression recognition methods require a large number of model selection or hyperparameter tuning to select better results from them, which consumes a large amount of time and labor costs. In this paper, we overcome this problem by exploiting the intradomain structure. Nonparametric transfer features are learned through intradomain alignment, while at the same time, a classifier is learned through intradomain programming. In order to evaluate the performance, a large number of cross-database experiments were conducted in CASMEII and SMIC databases. The comparison of results shows that this method can achieve a promising recognition accuracy and with high computational efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.