Varicella is an acute respiratory infectious diseases, with high transmissibility and quick dissemination. In this study, an SEIR (susceptible-exposed-infected-recovered) dynamic model was established to explore the optimal prevention and control measures according to the epidemiological characteristics about varicella outbreak in a school in a central city of China. Berkeley Madonna 8.3.18 and Microsoft Office Excel 2010 software were employed for the model simulation and data management, respectively. The result showed that the simulated result of SEIR model agreed well with the reported data when β (infected rate) equal to 0.067. Models showed that the cumulative number of cases was only 13 when isolation adopted when the infected individuals were identified (assuming isolation rate was up to 100%); the cumulative number of cases was only two and the TAR (total attack rate) was 0.56% when the vaccination coefficient reached 50%. The cumulative number of cases did not change significantly with the change of efficiency of ventilation and disinfection, but the peak time was delayed; when δ (vaccination coefficient) = 0.1, m (ventilation efficiency) = 0.7 or δ = 0.2, m = 0.5 or δ = 0.3, m = 0.1 or δ = 0.4 and above, the cumulative number of cases would reduce to one case and TAR would reduce to 0.28% with combined interventions. Varicella outbreak in school could be controlled through strict isolation or vaccination singly; combined interventions have been adopted when the vaccination coefficient was low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.