The ion beam sputtering (IBS) of smooth mono-elemental Si with impurity co-deposition is extended to a pre-rippled binary compound surface of fused silica (SiO 2 ). The dependence of the rms roughness and the deposited amount of Al on the distance from the Al source under Ar + IBS with Al co-deposition was investigated on smooth SiO 2 , pre-rippled SiO 2 , and smooth Si surfaces, using atomic force microscopy and X-ray photoelectron spectroscopy. Although the amounts of Al deposited on these three surfaces all decreased with increasing distance from the Al target, the morphology and rms roughness of the smooth Si surface did not demonstrate a strong distance dependence. In contrast to smooth Si, the rms roughness of both the smooth and pre-rippled SiO 2 surfaces exhibited a similar distance evolution trend of increasing, decreasing, and final stabilization at the distance where the results were similar to those obtained without Al co-deposition. However, the pre-rippled SiO 2 surfaces showed a stronger modulation of rms roughness than the smooth surfaces. At the incidence angles of 60° and 70°, dot-decorated ripples and roof-tiles were formed on the smooth SiO 2 surfaces, respectively, whereas nanostructures of closely aligned grains and blazed facets were generated on the pre-rippled SiO 2 , respectively. The combination of impurity co-deposition with pre-rippled surfaces was found to facilitate the formation of novel types of nanostructures and morphological growth. The initial ripples act as a template to guide the preferential deposition of Al on the tops of the ripples or the ripple sides facing the Al wedge, but not in the valleys between the ripples, leading to 2D grains and quasiblazed grating, which offer significant promise in optical applications. The rms roughness enhancement is attributed not to AlSi, but to AlO x F y compounds originating mainly from the Al source.
Ion bombardment (IB) is a promising nanofabrication technique for producing nanoripples. A critical issue that restricts the application of IB is the limited quality of IB-induced nanoripples. Photoresist (PR) and antireflection coating (ARC) are of technological relevance for lithographic exposure processes. Moreover, to improve the quality of IB-induced self-organized nanoripples, in this study, a PR/ARC bilayer was bombarded at an incidence angle of 50°. The surface normalized defect density and power spectral density, obtained via scanning atomic force microscopy, indicate the superiority of the PR/ARC bilayer nanoripples over those of single PR or ARC layers. The growth mechanism of the improved nanoripples, deciphered via the temporal evolution of the morphology, involves the following processes: (i) formation of a well-grown IB-induced nanoripple prepattern on the PR, (ii) transfer of nanoripples from the PR to the ARC, forming an initial ARC nanoripple morphology for subsequent IB, and (iii) conversion of the initial nonuniform ARC nanoripples into uniform nanoripples. In this unique method, the angle of ion-incidence should be chosen so that ripples form on both PR and ARC films. Overall, this method facilitates nanoripple improvement, including prepattern fabrication for guiding nanoripple growth and sustainable nanoripple development via a single IB. Thus, the unique method presented in this study can aid in advancing academic research and also has potential applications in the field of IB-induced nanoripples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.