Location Based Services (LBS) provide a new perspective for spatiotemporally analyzing dynamic urban systems. Research has investigated urban dynamics using GSM (Global System for Mobile Communications), GPS (Global Positioning System), SNS (Social Networking Services) and Wi-Fi techniques. However, less attention has been paid to the analysis of urban structure (especially commuting pattern) using smart card data (SCD), which are widely available in most cities. Additionally, ubiquitous LBS data, although providing rich spatial and temporal information, lacks rich information on the social dimension, which limits its in-depth application. To bridge this gap, this paper combines bus SCD for a one-week period with a one-day household travel survey, as well as a parcel-level land use map to identify job-housing locations and commuting trip routes in Beijing. Two data forms (TRIP and PTD) are proposed, with PTD used for jobs-housing identification and TRIP used for commuting trip route identification. The results of the identification are aggregated in the bus stop and traffic analysis zone (TAZ) scales, respectively. Particularly, commuting trips from three typical residential communities to six main business zones are mapped and compared to analyze commuting patterns in Beijing. The identified commuting trips are validated on three levels by comparison with those from the survey in terms of commuting time and distance, and the positive validation results prove the applicability of our approach. Our experiment, as a first step toward enriching LBS data using conventional survey and urban GIS data, can obtain solid identification results based on rules extracted from existing surveys or censuses.
Against the paucity of information on urban parcels in China, we propose a method to automatically identify and characterize parcels using OpenStreetMap (OSM) and points of interest (POI) data. Parcels are the basic spatial units for fine-scale urban modeling, urban studies, and spatial planning. Conventional methods for identification and characterization of parcels rely on remote sensing and field surveys, which are labor intensive and resource consuming. Poorly developed digital infrastructure, limited resources, and institutional barriers have all hampered the gathering and application of parcel data in China. Against this backdrop, we employ OSM road networks to identify parcel geometries and POI data to infer parcel characteristics. A vector-based cellular automata model is adopted to select urban parcels. The method is applied to the entire state of China and identifies 82 645 urban parcels in 297 cities. Notwithstanding all the caveats of open and/or crowd-sourced data, our approach can produce a reasonably good approximation of parcels identified using conventional methods, thus it has the potential to become a useful tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.