Static load tests were carried out with Osterberg method on 3 bored piles formed in Liao River Bridge. Bearing capacity, base resistance and frictional resistance were obtained before and after base grouting. Based on the test results, the ultimate bearing capacities of piles were increased for 14.74%~43.87%, that of pile bases were increased for 89.57% ~ 163.49% and the frictional resistances were most increased for 31.20%. The pile bearing behavior was improved. Not only base resistances were improved after grouting, but also frictional resistances were improved by bettering the characteristics of soils and interfaces between piles and soils. After grouting, pile base resistance ratio of pile bearing capacity increased, and some frictional piles changed into end-bearing frictional piles. The frictional resistance of lower pile increased more than that of upper pile after grouting. The slurry penetration height of base grouting had a certain range, which was affected by quantity of mortar intrusion, grouting technology, grouting pressure and geological structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.