compared with SLT using conventional laser energy, low-energy SLT lowers IOP with fewer complications, making it a safe and effective option.
Background The inflammation hypothesis of atherosclerosis has been put forward for more than 20 years. Although many animal experiments have suggested that anti-inflammatory therapy can inhibit the atherosclerotic process, the efficacy of anti-inflammatory therapy for patients with coronary artery disease (CAD) is still controversial. Therefore, this study aims to evaluate the safety and efficacy of anti-inflammatory drugs in patients with CAD. Method We conducted this systematic review and meta-analysis of randomized controlled trials by searching PubMed, EMBASE, web of science, and Cochrane Library database. The primary outcome was a composite outcome of cardiovascular death, myocardial infarction (MI), or stroke. The secondary outcomes included individual MI, coronary revascularization, cardiovascular death, all-cause death, and stroke. The relative risk (RR) and 95% confidence intervals (CI) for outcome events were calculated by the fixed effects model, and trial sequential analysis was applied to assess the results. Result A total of ten randomized controlled trials and 60,782 patients with CAD was included. Compared with patients receiving placebo, anti-inflammatory therapy significantly reduced the incidence of the primary outcome in patients with CAD (RR 0.93, 0.89–0.98, P = 0.007). In addition, the anti-inflammatory therapy can also reduce the risk of MI (RR 0.90, 0.84–0.96, P = 0.002) and coronary revascularization (RR 0.74, 0.66–0.84, P < 0.00001) remarkably. However, there was no significant difference in the incidence of cardiovascular death (RR 0.94, 0.86–1.02, P = 0.14), all-cause death (RR 1.00, 0.94–1.07, P = 0.98) and stroke (RR 0.96, 0.85–1.09, P = 0.51) between two groups. Conclusions Anti-inflammatory therapy can reduce the incidence of the primary outcome in patients with CAD, especially the risk of MI and coronary revascularization. However, anti-inflammatory therapy increases the risk of infection. (Registered by PROSPERO, CRD 420212291032).
Background and ObjectiveThe de novo coronary lesions are the most common form of coronary artery disease, and stent implantation still is the main therapeutic strategy. This network meta-analysis aims to evaluate the efficacy of drug-coated balloons only (DCB only) and DCB combined with bare-metal stents (DCB+BMS) strategies vs. drug-eluting stents (DES) and BMS approaches in coronary artery de novo lesion.MethodPubMed, EMBASE, and Cochrane Library databases were retrieved to include the relevant randomized controlled trials that compared DCB approaches and stents implantation in patients with de novo coronary artery diseases. The primary outcome was major adverse cardiac events (MACE). The clinical outcomes included target lesion revascularization (TLR), all-cause death, and myocardial infarction. The angiographic outcomes consisted of in-segment late lumen loss (LLL) and binary restenosis. The odds ratio (OR) and 95% confidence intervals (95% CIs) for dichotomous data, and weighted mean differences for continuous data were calculated in the Bayesian network frame.ResultA total of 26 randomized controlled trials and 4,664 patients were included in this study. The DCB-only strategy was comparable with the efficacy of MACE, clinical outcomes, and binary restenosis compared with DES. In addition, this strategy can significantly reduce the in-segment LLL compared with the first-generation (MD −0.29, −0.49 to −0.12) and the second-generation DES (MD −0.15, −0.27 to −0.026). However, subgroup analysis suggested that DCB only was associated with higher in-segment LLL than DES (MD 0.33, 0.14 to 0.51) in patients with acute coronary syndrome. Compared with DES, the DCB+BMS strategy had a similar incidence of myocardial infarction and all-cause death, but a higher incidence of MACE, TLR, and angiographic outcomes. In addition, DCB+BMS was associated with a similar incidence of myocardial infarction and all-cause death than BMS, with a lower incidence of MACE, TLR, and angiographic outcomes.ConclusionThe DCB only is associated with similar efficacy and lower risk of LLL compared with DES. In addition, the DCB+BMS strategy is superior to BMS alone but inferior to DES (PROSPERO, CRD 42021257567).Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/#recordDetails.
To explore the Radix Paeoniae Rubra-Flos Carthami herb pair's (RPR-FC) potential mechanism in treating ischemic stroke (IS) by network pharmacology and molecular docking technology. The Traditional Chinese Medicine Systems Pharmacology Database was used to screen the active components of the RPR-FC, and Cytoscape 3.8 software was used to construct a network map of its active components and targets of action. The GeneCards and OMIM databases were used to identify disease targets of IS, and the common targets were chosen as research targets and imported into the STRING database to construct a protein–protein interaction network map of these targets. R language software was used to analyze the enrichment of GO terms and KEGG pathways, and explore the mechanisms of these targets. Molecular docking technology was used to verify that the RPR-FC components had a good bonding activity with their potential targets. A total of 44 active components, which corresponded to 197 targets, were identified in the RPR-FC. There were 139 common targets between the herb pair and IS. GO functional enrichment analysis revealed 2253 biological process entries, 72 cellular components entries, and 183 molecular functions entries. KEGG pathway enrichment analysis was mainly related to the NF-kappa B signaling pathway, the TNF signaling pathway, apoptosis, the MAPK signaling pathway, the PI3K-Akt signaling pathway, the VEGF signaling pathway, etc. The molecular docking results showed the components that docked well with key targets were quercetin, luteolin, kaempferol, and baicalein. The active components (quercetin, luteolin, kaempferol, and baicalein) of the RPR-FC and their targets act on proteins such as MAPK1, AKT1, VEGFA, and CASP3, which are closely related to IS. 1 These targets are closely related to the NF-kappa B signaling pathway, the MAPK signaling pathway, the PI3K-Akt signaling pathway, the VEGF signaling pathway, and other signaling pathways. These pathways are involved in the recovery of nerve function, angiogenesis, and neuronal apoptosis and the regulation of inflammatory factors, which may have a therapeutic effect on IS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.