Reactivation of T cell immunity by PD-1/PD-L1 immune checkpoint blockade has been shown to be a promising cancer therapeutic strategy. However, PD-L1 immunohistochemical readout is inconsistent with patient response, which presents a clinical challenge to stratify patients. Because PD-L1 is heavily glycosylated, we developed a method to resolve this by removing the glycan moieties from cell surface antigens via enzymatic digestion, a process termed sample deglycosylation. Notably, deglycosylation significantly improves anti-PD-L1 antibody binding affinity and signal intensity, resulting in more accurate PD-L1 quantification and prediction of clinical outcome. This proposed method of PD-L1 antigen retrieval may provide a practical and timely approach to reduce false-negative patient stratification for guiding anti-PD-1/PD-L1 therapy.
Multiple membrane-bound receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR) and ErbB-2, have been reported to be localized in the nucleus, where emerging evidence suggests that they are involved in transcriptional regulation, cell proliferation, DNA repair and chemo-and radio-resistance. Recent studies have shown that endocytosis and endosomal sorting are involved in the nuclear transport of cell surface RTKs. However, the detailed mechanism by which the full-length receptors embedded in the endosomal membrane travel all the way from the cell surface to the early endosomes and pass through the nuclear pore complexes is unknown. This important area has been overlooked for decades, which has hindered progress in our understanding of nuclear RTKs' functions. Here, we discuss the putative mechanisms by which EGFR family RTKs are shuttled into the nucleus. Understanding the trafficking mechanisms as to how RTKs are transported from the cell surface to the nucleus will significantly contribute to understanding the functions of the nuclear RTKs.
Epidermal growth factor receptor (EGFR) can undergo post-translational modifications, including phosphorylation, glycosylation and ubiquitylation, leading to diverse physiological consequences and modulation of its biological activity. There is increasing evidence that methylation may parallel other post-translational modifications in the regulation of various biological processes. It is still not known, however, whether EGFR is regulated by this post-translational event. Here, we show that EGFR Arg 1175 is methylated by an arginine methyltransferase, PRMT5. Arg 1175 methylation positively modulates EGF-induced EGFR trans-autophosphorylation at Tyr 1173, which governs ERK activation. Abolishment of Arg 1175 methylation enhances EGF-stimulated ERK activation by reducing SHP1 recruitment to EGFR, resulting in augmented cell proliferation, migration and invasion of EGFR-expressing cells. Therefore, we propose a model in which the regulatory crosstalk between PRMT5-mediated Arg 1175 methylation and EGF-induced Tyr 1173 phosphorylation attenuates EGFR-mediated ERK activation.
Loss of the maintenance of genetic material is a critical step leading to tumorigenesis. It was reported that overexpression of Aurora-A and the constitutive activation of the epidermal growth factor (EGF) receptor (EGFR) are implicated in chromosome instability. In this study, we examined that when cells treated with EGF result in centrosome amplification and microtubule disorder, which are critical for genetic instability. Interestingly, the expression of Aurora-A was also increased by EGF stimulus. An immunofluorescence assay indicated that EGF can induce the nuclear translocation of EGFR. Chromatin immunoprecipitation (ChIP) and re-ChIP assays showed significant EGF-induced recruitment of nuclear EGFR and signal transducer and activator of transcription 5 (STAT5) to the Aurora-A promoter. A co-immunoprecipitation assay further demonstrated that EGF induces nuclear interaction between EGFR and STAT5. A small interfering (si)RNA knockdown assay also showed that EGFR and STAT5 are indeed involved in EGF-increased Aurora-A gene expression. Altogether, this study proposes that the nuclear EGFR associates with STAT5 to bind and increase Aurora-A gene expression, which ultimately may lead to chromosome instability and tumorigenesis. The results also provide a novel linkage between the EGFR signaling pathway and overexpression of Aurora-A in tumorigenesis and chromosome instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.