Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase of increasingly recognized importance in a large number of fields, ranging from neuronal migration to synaptic plasticity and neurodegeneration. However, little is known about its mechanism of activation beyond its requirement for binding to p35 or p39. We have examined membrane interactions as one method of regulating the Cdk5-p35 complex. The kinase activity of Cdk5-p35 is low when it is bound to membranes. The Cdk5-p35 found in rat brain extract associates with membranes in two ways. Approximately 75% of complexes associate with membranes via ionic interactions only, and the remaining 25% associate with membranes via ionic interactions together with lipidic interactions. Solubilization with detergent or high-salt solution activates Cdk5-p35 several fold, and this activation is reversible. Therefore, membrane interactions represent a novel mechanism for the regulation of Cdk5-p35 kinase activity.
Although protein kinase Cdk5-p35 is important in many aspects of the development and function of the central nervous system, relatively little is known about its regulation. In the present study, we examined the relationship between the association of this kinase with membranes and its activity in perinatal and adult rat brains. Cdk5-p35 in perinatal brain exhibited higher activity than that found in adult tissue. Gel filtration chromatography revealed that a portion of Cdk5-p35 from fetal brain occurred as a soluble complex, whereas Cdk5-p35 in adult brain occurred predominantly as a membrane-bound complex. Furthermore, soluble Cdk5-p35 in perinatal brain displayed elevated kinase activity, whereas membrane-bound Cdk5-p35 was highly active only in the presence of detergent. This more active soluble form of Cdk5-p35 correlated to a form in which p35 was phosphorylated, whereas the less active membrane-bound form of Cdk5 correlated to the dephosphorylated form of p35, as evidenced by a downward shift in electrophoretic mobility. Cdk5 activity and transition from soluble to membrane-associated compartments could be modulated by conditions that affected the phosphorylation or dephosphorylation of p35. For example, dephosphorylation of p35 in brain extracts was suppressed by selective inhibition of protein phosphatase-1. Together, these results suggest that the kinase activity of Cdk5-p35 is regulated through its association with membranes, which in turn is under the control of Cdk5-dependent phosphorylation and protein phosphatase-1-dependent dephosphorylation of p35.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.