We propose a device model that elucidates the role of domain walls in the photovoltaic effect in multidomain ferroelectric perovskites. The model accounts for the intricate interplay between ferroelectric polarization, space charges, photo-generation and electronic transport. When applied to bismuth ferrite, results show a significant electric potential step across both 71 • and 109 • domain walls, which in turn contributes to the photovoltaic (PV) effect. We also find a strong correlation between polarization and oxygen octahedra tilts, which indicates the nontrivial role of the latter in the PV effect. The domain wall-based PV effect is further shown to be additive in nature, allowing for the possibility of generating above-bandgap voltage.arXiv:1811.07948v1 [cond-mat.mtrl-sci]
Recently Tsiatmas et al proposed using a nanoring made of two different metallic sectors to generate a magnetic pulse from a laser pulse [1]. Non-uniform heating of the ring creates very large temperature gradients, which drive thermoelectric currents, and this creates a localized magnetic field. However, heat from the laser pulse may result in the melting of the nanoring. We propose a symmetric structure made of four metallic sectors, which results in a higher magnetic field generation together with a lower lattice temperature. We also show that the magnetic field depends strongly on the size of the metallic sectors and interpret the results with the help of the electromotive forces, the overall ring resistance, and Biot-Savart law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.