A novel coronavirus recently emerged as an acute respiratory syndrome, and has caused a pneumonia outbreak world-widely. As the COVID-19 continues to spread rapidly across the world, computed tomography (CT) has become essentially important for fast diagnoses. Thus, it is urgent to develop an accurate computer-aided method to assist clinicians to identify COVID-19-infected patients by CT images. Here, we have collected chest CT scans of 88 patients diagnosed with COVID-19 from hospitals of two provinces in China, 100 patients infected with bacteria pneumonia, and 86 healthy persons for comparison and modeling. Based on the data, a deep learning-based CT diagnosis system was developed to identify patients with COVID-19. The experimental results showed that our model could accurately discriminate the COVID-19 patients from the bacteria pneumonia patients with an AUC of 0.95, recall (sensitivity) of 0.96, and precision of 0.79. When integrating three types of CT images, our model achieved a recall of 0.93 with precision of 0.86 for discriminating COVID-19 patients from others. Moreover, our model could extract main lesion features, especially the ground-glass opacity (GGO), which are visually helpful for assisted diagnoses by doctors. An online server is available for online diagnoses with CT images by our server (http://biomed.nscc-gz.cn). Source codes and datasets are available at our GitHub.
Background A novel coronavirus (COVID-19) has emerged recently as an acute respiratory syndrome. The outbreak was originally reported in Wuhan, China, but has subsequently been spread world-widely. As the COVID-19 continues to spread rapidly across the world, computed tomography (CT) has become essentially important for fast diagnoses. Thus, it is urgent to develop an accurate computer-aided method to assist clinicians to identify COVID-19-infected patients by CT images. Materials and Methods We collected chest CT scans of 88 patients diagnosed with the COVID-19 from hospitals of two provinces in China, 101 patients infected with bacteria pneumonia, and 86 healthy persons for comparison and modeling. Based on the collected dataset, a deep learning-based CT diagnosis system (DeepPneumonia) was developed to identify patients with COVID-19. Results The experimental results showed that our model can accurately identify the COVID-19 patients from others with an excellent AUC of 0.99 and recall (sensitivity) of 0.93. In addition, our model was capable of discriminating the COVID-19 infected patients and bacteria pneumonia-infected patients with an AUC of 0.95, recall (sensitivity) of 0.96. Moreover, our model could localize the main lesion features, especially the ground-glass opacity (GGO) that is of great help to assist doctors in diagnosis. The diagnosis for a patient could be finished in 30 seconds, and the implementation on Tianhe-2 supercompueter enables a parallel executions of thousands of tasks simultaneously. An online server is available for online diagnoses with CT images by http://biomed.nscc-gz.cn/server/Ncov2019. Conclusions The established models can achieve a rapid and accurate identification of COVID-19 in human samples, thereby allowing identification of patients.
Abstract-BACKGROUND -predicting defect-prone software components is an economically important activity and so has received a good deal of attention. However, making sense of the many, and sometimes seemingly inconsistent, results is difficult. OBJECTIVE -we propose and evaluate a general framework for software defect prediction that supports (i) unbiased and (ii) comprehensive comparison between competing prediction systems. METHOD -the framework comprises (i) scheme evaluation and (ii) defect prediction components. The scheme evaluation analyzes the prediction performance of competing learning schemes for given historical data sets. The defect predictor builds models according to the evaluated learning scheme and predicts software defects with new data according to the constructed model. In order to demonstrate the performance of the proposed framework, we use both simulation and publicly available software defect data sets. RESULTS -the results show that we should choose different learning schemes for different data sets (i.e. no scheme dominates), that small details in conducting how evaluations are conducted can completely reverse findings and lastly that our proposed framework is more effective, and less prone to bias than previous approaches. CONCLUSIONS -failure to properly or fully evaluate a learning scheme can be misleading, however, these problems may be overcome by our proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.