Physical exercise physiological index monitoring has a wide range of applications in the fields of physiological index planning and design and organizational network evolution. Among the existing analysis methods for monitoring data points of physical exercise physiological indicators, the analysis error of point events under linear constraints is relatively large. Based on discrete data-driven datasets, this paper realizes the monitoring and visualization of sports physiological indicators. First, the principal component analysis of multivariate discrete data is used for dimensionality reduction. Second, the clustering of discrete physical exercise data uses the BIC criterion to preset the number of clusters, and the R software is used to visually realize the clustering results of physical exercise physiological indicators in each region in the text. The experiment solves the problem of mismatch of model parameter combinations when the physical exercise index monitoring quantity is used for the auxiliary analysis of the clustering results. Through the ARI index monitoring, the accuracy of the clustering physical exercise results of the method is increased to 89.7%, and the error rate is controlled within 4.3%. It promotes the superiority and effectiveness of multivariate discrete data-driven model clustering methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.