In this study, radiosonde observations during the period of 2012-2013 from three stations in the Hunan region, China, were used to establish regional Tm models (RTMs) that are a fitting function of multiple meteorological factors (Ts, Es, and Ps). One-factor, two-factor, and three-factor RTMs were assessed by comparing their Tm against the radiosonde-derived Tm (as the truth) during the period of 2013-2014. Statistical results showed that the bias and RMS of the one-factor RTM, in comparison to the BTM result, were reduced by 88% and 28%, respectively. The two-factor and three-factor RTMs showed similar accuracy and both outperformed the one-factor RTM, with an improvement of 7% in RMS. The bias and RMS of all the four seasonal two-factor RTMs were smaller than the yearly two-factor RTM, with the improvements of 3%, 10%, 2%, and 3% in RMS. The improvement of the conversion factors in mean bias and RMS resulting from the seasonal two-factor RTM is 92% and 31%. The bias and RMS of the PWV resulting from the seasonal two-factor RTM are improved by 37% and 12%, respectively. Therefore, the seasonal two-factor RTMs are recommended for the research and applications of GNSS meteorology in the Hunan region, China.
Based on conventional observation data from the China Meteorological Administration (CMA) and reanalysis data from the American National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) between 2012 and 2021, combined with the meteorological analysis, composite synthesis, and water vapor trajectory analysis, the weather circulations of typical rainstorms during the 10 years can be divided into 4 categories: Static Front Pattern (SFP), Subtropical High Edge Pattern (SHEP), Northeast Cold Vortex Pattern (NCVP), and Low-Level Vortex and Shear Pattern (LLVSP). The SHEP and SFP rainstorms have the characteristics of long duration and wide range, while the NCVP rainstorms are characterized by mobility and disaster weather accompaniment. The daily precipitation of LLVSP cases has extremity feature. The occurrence and development of rainstorms are well coordinated with the systems on lower levels. The main water vapor channel in lower layers of the SFP cases is from the South China Sea, while it is from Bohai for the NCVP cases and the Bay of Bengal for the SHEP and LLVSP cases. The main water vapor channel in middle layers is from the Bay of Bengal because of the affection of the southwest air flow. The south boundary of the MLYRB is the most important water vapor input boundary, followed by the west boundary, while the East and North boundaries are the outflow boundaries. During the rainstorms, the low-level water vapor is exuberant with low-level water vapor convergence much stronger than the high-level divergence. Among the four types of rainstorms, the NCVP cases provide the most abundant low-level water vapor convergence, resulting in the strongest short-term precipitation among the four types. Combined with water vapor transportation and convergence, the refined spatial conceptual models of the four types of rainstorms can better judge the process intensity and falling area and provide reference for disastrous weather forecast and early warning.
Precipitable water vapour (PWV) over a ground station can be estimated from the global navigation satellite systems (GNSS) signal's zenith wet delays (ZWD) multiplying by a conversion factor that is a function of weighted-mean temperature (T m). The commonly used Bevis T m model (BTM) may not perform well in some regions due to its use of data from North America in the model development. In this study, radiosonde observations in 2012 from three stations-Changsha, Huaihua, Chenzhou in Hunan province, China-were used to establish a new regional T m model (RTM) based on a numerical integration and the least squares estimation methods. Four seasonal RTMs were also established and assessed for 2012. The RTM-derived T m at the three stations from 2012-2014 were validated by comparing it with radiosondederived T m. Results showed that the accuracy of the yearly RTM was improved by 29% over the BTM, and the bias and root mean square (RMS) of all the four seasonal RTMs were slightly smaller than the yearly RTM, and the accuracy of spring, summer, autumn and winter T m models is improved by 5, 13, 4, and 5% respectively. In addition, the bias and RMS of the differences between the GNSS-PWV resulting from the RTM-derived T m and the radiosonde-PWV were 1.13 and 3.21 mm respectively, which are reduced by 34 and 10% respectively. Thus the seasonal RTMs are recommended for GNSS meteorology for Hunan Province.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.