Restoration of the orienting response to a light by a change in its predictive accuracy.
We measured the spatiotemporal aspects of the odor-induced population response in the turtle olfactory bulb using a voltagesensitive dye, RH414, and a 464-element photodiode array. In contrast with previous studies of population activity using local field potential recordings, we distinguished four signals in the response. The one called DC covered almost the entire area of the olfactory bulb; in addition, three oscillations, named rostral, middle, and caudal according to their locations, occurred over broad regions of the bulb. In a typical odor-induced response, the DC signal appeared almost immediately after the start of the stimulus, followed by the middle oscillation, the rostral oscillation, and last, the caudal oscillation. The initial frequencies of the three oscillations were 14.1, 13.0, and 6.6 Hz, respectively. When the rostral and caudal oscillations occurred together, their frequencies differed by a factor of 1.99 Ϯ 0.01.The following evidence suggests that the four signals are functionally independent: (1) in different animals some signals could be easily detected whereas others were undetectable; (2) the four signals had different latencies and frequencies; (3) the signals occurred in different locations and propagated in different directions; (4) the signals responded differently to changes in odor concentration; (5) the signals had different shapes; and (6) the rostral and caudal signals added in a simple, linear manner in regions where the location of the two signals overlapped. However, the finding that the frequency of the rostral oscillation is precisely two times that of the caudal oscillation suggests a significant relationship between the two.The location of the caudal oscillation in the bulb changed from cycle to cycle, implying that different groups of neurons are active in different cycles. This result is consistent with the earlier findings in the olfactory system of the locust .Our results suggest an additional complexity of parallel processing of olfactory input by multiple functional population domains.
Most axons connecting the thalamus and cortex in both directions pass through the thalamic reticular nucleus (TRN), a thin layer of GABAergic cells adjacent to the thalamus, and innervate neurons there. The TRN, therefore, is in a strategic location to regulate thalamocortical communication. We recorded from neurons of the somatosensory region of the TRN in a thalamocortical slice preparation and studied the spatial organization of their thalamic input using laser scanning photostimulation. We show that the thalamoreticular pathway is organized topographically for most neurons. The somatosensory region of the TRN can be organized into three tiers. From the inner (thalamoreticular) border to the outer, in a manner roughly reciprocal to the reticulothalamic pathway, each of these tiers receives its input from one of the somatosensory relays of the thalamus, POm, VPM and VPL, respectively. What is surprising is that about a quarter of the recorded neurons received input from multiple thalamic regions usually located in different nuclei. These neurons distribute quite evenly throughout the thickness of the TRN. Our results, therefore, suggest that there exist a subpopulation of TRN neurons that receive convergent inputs from multiple thalamic sources and engage in more complex patterns of inhibition of relay cells. We propose these neurons enable the TRN to act as an externally driven “searchlight” that integrates cortical and subcortical inputs and then inhibits or disinhibits specific thalamic relay cells, so that appropriate information can get through the thalamus to the cortex.
The pathway from cortical layer 6 to the thalamus is a property of all thalamic relay nuclei. This pathway, as a population, directly excites relay cells and indirectly inhibits them via the thalamic reticular nucleus. To understand the circuit organization of this cortical feedback, we used laser-scanning photostimulation, which specifically activates somata or dendrites, to stimulate the primary somatosensory cortex in an in vitro thalamocortical slice preparation while recording from neurons of the ventral posterior medial nucleus. Layer 6 photostimulation evoked biphasic excitatory postsynaptic current/inhibitory postsynaptic current (EPSC/IPSC) responses in the neurons of the ventral posterior medial nucleus, indicating that such photostimulation strongly activates reticular cells. These disynaptic IPSCs were greatly suppressed or abolished by bath application of the muscarinic agonist acetyl-beta-methylcholine. Our results suggest that the top-down modulation of thalamic neurons from cortical layer 6 involves an inhibitory component via the thalamic reticular nucleus, and this component can be selectively reduced by cholinergic input. Finally, we found the footprints for the excitatory corticothalamic and the inhibitory cortico-reticulo-thalamic inputs to be located in similar positions, though in some cases they are offset. Both patterns have implications for cortico-reticulo-thalamic circuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.