The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.
Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 59 and 39 splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level.
Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.
Alternative splicing (AS) plays a crucial role in the diversification of gene function and regulation. Consequently, the systematic identification and characterization of temporally regulated splice variants is of critical importance to understanding animal development. We have used high-throughput RNA sequencing and microarray profiling to analyze AS in C. elegans across various stages of development. This analysis identified thousands of novel splicing events, including hundreds of developmentally regulated AS events. To make these data easily accessible and informative, we constructed the C. elegans Splice Browser, a web resource in which researchers can mine AS events of interest and retrieve information about their relative levels and regulation across development. The data presented in this study, along with the Splice Browser, provide the most comprehensive set of annotated splice variants in C. elegans to date, and are therefore expected to facilitate focused, high resolution in vivo functional assays of AS function.[Supplemental material is available for this article. The sequence data from this study have been submitted to the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession no. SRA009279. The microarray data from this study have been submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/ geo) under accession no. GSE25927.] Alternative splicing (AS) is the process by which multiple mRNA transcripts are produced from a single precursor transcript through the differential utilization of splice sites. Alternative splicing is one of the key mechanisms that have evolved in metazoans to generate increased transcriptome complexity and recent studies estimate that greater than 95% of human multi-exon genes express multiple splice isoforms (Pan et al. 2008;. Moreover, alternatively spliced exons are often differentially regulated across tissues and during development, suggesting that individual isoforms may serve specific spatial or temporal roles (Hartmann and Valcarcel 2009;Licatalosi and Darnell 2010;Nilsen and Graveley 2010).The importance of proper regulation of AS during development has been demonstrated in many different instances; one particularly well-studied example is that of the sex determination pathway in Drosophila. In this pathway, the female-specific expression of a splicing regulator transformer stimulates the inclusion of exons in transcripts of the doublesex and fruitless transcription factor genes (Lopez 1998;Forch and Valcarcel 2003). The femalespecific isoforms of these transcription factors subsequently activate the expression of genes required for female development, while the male-specific variants induce a gene expression program important for male differentiation (Dulac 2005;Shirangi and McKeown 2007). Similar spatio-temporally regulated AS networks are likely to exist in metazoans. The characterization of these AS networks, and their integration with other layers of gene regulation, will be necessary for a more compl...
An increasing body of evidence indicates that miR-149 can both suppress and promote tumor growth depending on the tumor type. However, the role of miR-149 in the progression of gastric cancer (GC) remains unknown. Here we report that miR-149 is a tumor suppressor in human gastric cancer. miR-149 expression is decreased in GC cell lines and clinical specimens in comparison to normal gastric epithelial cell and tissues, respectively. The expression levels of miR-149 also correlate with the differentiation degree of GC cells and tissues. Moreover, ectopic expression of miR-149 in gastric cancer cells inhibits proliferation and cell cycle progression by down-regulating ZBTB2, a potent repressor of the ARF-HDM2-p53-p21 pathway, with a potential binding site for miR-149 in its mRNA's 3′UTR. It is also found that ZBTB2 expression increases in GC cells and tissues compared to normal gastric epithelial cell and tissues, respectively. Silencing of ZBTB2 leads to suppression of cell growth and cell cycle arrest in G0/G1 phase, indicating that ZBTB2 may act as an oncogene in GC. Furthermore, transfection of miR-149 mimics into gastric cancer cells induces down-regulation of ZBTB2 and HDM2, and up-regulation of ARF, p53, and p21 compared to the controls. In summary, our data suggest that miR-149 functions as a tumor suppressor in human gastric cancer by, at least partially through, targeting ZBTB2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.