Acinetobacter baumannii is currently posing a serious threat to global health. Lipopolysaccharide (LPS) is a potent virulence factor of pathogenic Gram-negative bacteria. To explore the antigenic properties of A. baumannii LPS, four Kdo-containing inner core glycans from A. baumannii strain ATCC 17904 were synthesized. A flexible and divergent method based on the use of the orthogonally substituted α-Kdo-(2!5)-Kdo disaccharides was developed. Selective removal of different protecting groups in these key precursors and elongation of sugar chain via αstereocontrolled coupling with 5,7-O-di-tert-butylsilylene or 5-O-benzoyl protected Kdo thioglycosides and 2-azido-2deoxyglucosyl thioglycoside allowed efficient assembly of the target molecules. Glycan microarray analysis of sera from infected patients revealed that the 4,5-branched Kdo trimer was a potential antigenic epitope, which is attractive for further immunological research to develop carbohydrate vaccines against A. baumannii.
An expedient synthesis of the nonreducing hexasaccharide fragment of axinelloside A has been completed via a linear stepwise glycosylation approach. Challenges involved in the synthesis include the highly stereoselective construction of five consecutive 1,2-cis-glycosidic linkages and the formation of a sterically crowded 2,3-disubstituted L-fucoside subunit. Protecting group-directing glycosylation strategies such as the remote participation effect of the benzoyl substituent and the stereocontrolling effect of the 4,6-O-benzylidene group were employed for the synthesis of the desired 1,2-cis-glycosidic linkages. Moreover, the 2,3branched L-fucoside framework was established through a 3-O and then 2-O glycosylation sequence in which the 3-hydroxyl group of the core L-fucose unit was glycosylated first and then the 2-hydroxyl. The synthetic hexasaccharide is properly protected, so it can be employed as a precursor to synthesize its natural form.
Acinetobacter baumannii is currently posing a serious threat to global health. Lipopolysaccharide (LPS) is a potent virulence factor of pathogenic Gram-negative bacteria. To explore the antigenic properties of A. baumannii LPS, four Kdo-containing inner core glycans from A. baumannii strain ATCC 17904 were synthesized. A flexible and divergent method based on the use of the orthogonally substituted α-Kdo-(2!5)-Kdo disaccharides was developed. Selective removal of different protecting groups in these key precursors and elongation of sugar chain via αstereocontrolled coupling with 5,7-O-di-tert-butylsilylene or 5-O-benzoyl protected Kdo thioglycosides and 2-azido-2deoxyglucosyl thioglycoside allowed efficient assembly of the target molecules. Glycan microarray analysis of sera from infected patients revealed that the 4,5-branched Kdo trimer was a potential antigenic epitope, which is attractive for further immunological research to develop carbohydrate vaccines against A. baumannii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.