Autophagy is a process of intracellular self-recycling and degradation that plays an important role in maintaining cell homeostasis. However, the molecular mechanism of autophagy remains to be further studied. Mitochondria-associated endoplasmic reticulum membranes (MAMs) are the region of the ER that mediate communication between the ER and mitochondria. MAMs have been demonstrated to be involved in autophagy, Ca
2+
transport and lipid metabolism. Here, we discuss the composition and function of MAMs, more specifically, to emphasize the role of MAMs in regulating autophagy. Finally, some key information that may be useful for future research is summarized.
AS-OCT can image the structure of horizontal rectus muscles well and provide good reliability and accuracy in measurement of the limbus-insertion distance.
Objectives
In diabetic nephropathy (DN), hypoxia‐inducible factor‐1α (HIF‐1α) activation in tubular cells plays an important protective role against kidney injury. The effects may occur via the target genes of HIF‐1α, such as haem oxygenase‐1 (HO‐1), but the exact mechanisms are incompletely understood.
Materials and methods
Mice with proximal tubule‐specific knockout of HIF‐1α (PT‐HIF‐1α−/− mice) were generated, and diabetes was induced in these mice by streptozotocin (STZ) injection. In addition, to mimic a hypoxic state, cobaltous chloride (CoCl2) was applied to HK‐2 cells.
Results
Our study first verified that conditional knockout of HIF‐1α worsened tubular injury in DN; additionally, aggravated kidney dysfunction, renal histopathological alterations, mitochondrial fragmentation, ROS accumulation and apoptosis were observed in diabetic PT‐HIF‐1α−/− mice. In vitro study showed that compared to control group, HK‐2 cells cultured under hypoxic ambiance displayed increased mitochondrial fragmentation, ROS production, mitochondrial membrane potential loss and apoptosis. These increases were reversed by overexpression of HIF‐1α or treatment with a HO‐1 agonist. Importantly, cotreatment with a HIF‐1α inhibitor and a HO‐1 agonist rescued the HK‐2 cells from the negative impacts of the HIF‐1α inhibitor.
Conclusions
These data revealed that HIF‐1α exerted a protective effect against tubular injury in DN, which could be mediated via modulation of mitochondrial dynamics through HO‐1 upregulation.
Background
The mitochondrial associated endoplasmic reticulum (ER) membrane (MAM) provides a platform for communication between the mitochondria and ER, and it plays a vital role in many biological functions. Disulphide-bond A oxidoreductase-like protein (DsbA-L), expressed in the MAM, serves as an antioxidant and reduces ER stress. However, the role of DsbA-L and MAM in kidney pathobiology remains unclear.
Methods
Molecular biology techniques, transmission electron microscopy (TEM), in situ proximity ligation assays (PLAs), confocal microscopy, TUNEL staining and flow cytometry were utilized to analyse apoptosis and status of MAM in DsbA-L mutant mice.
Findings
We showed that MAM was significantly reduced in the kidneys of streptozotocin-induced diabetic mice, which correlated with the extent of renal injury. We also observed a correlation between the loss of MAM integrity and increased apoptosis and renal injury in diabetic nephropathy (DN). These alterations were further exacerbated in diabetic DsbA-L gene-deficient mice (DsbA-L
−/−
). In vitro, overexpression of DsbA-L in HK-2 cells restored MAM integrity and reduced apoptosis induced by high-glucose ambience. These beneficial effects were partially blocked by overexpression of FATE-1, a MAM uncoupling protein. Finally, the expression of DsbA-L was positively correlated with MAM integrity in the kidneys of DN patients but negatively correlated with apoptosis and renal injury.
Interpretation
Our results indicate that DsbA-L exerts an antiapoptotic effect by maintaining MAM integrity, which is apparently disrupted in DN.
Fund
This work was supported by the
(81730018), the
(2016YFC1305501) and
(DK60635).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.