Background: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, and its specific pathogenesis is still unclear. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized in a rat model of visceral hypersensitivity induced by neonatal colonic inflammation (NCI). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for Melatonin (MT) in sensitization of sodium channels in NCI rats. Methods: Colorectal distention (CRD) in adult male rats as a measure of visceral hypersensitivity. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch clamp configurations. Western blot and Immunofluorescence were employed to detect changes in expression of Na<sub>v</sub>1.8 and MT2. Results: The results showed that rats exhibited visceral hypersensitivity after NCI treatment. Intrathecal application of melatonin significantly increased the threshold of CRD in NCI rats with a dose-dependent manner, but has no role in the control group. Whole-cell patch clamp recording showed that melatonin remarkably decreased the excitability and the density of TTX-R sodium channel in DRG neurons from NCI rats. The expression of MT2 receptor at the protein level was markedly lower in NCI rats. 8-MP, an agonist of MT2 receptor, enhanced the distention threshold in NCI rats. Application of 8-MP reversed the enhanced hypersensitivity of DRG neurons from NCI rats. 8-MP also reduced TTX-R sodium current density and modulated dynamics of TTX-R sodium current activation. Conclusions: These data suggest that sensitization of sodium channels of colon DRG neurons in NCI rats is most likely mediated by MT2 receptor, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.
Background: Irritable bowel syndrome (IBS) related chronic visceral pain affects 20% of people worldwide. The treatment options are very limited. Although the scholarly reviews have appraised the potential effects of the intestinal microbiota on intestinal motility and sensation, the exact mechanism of intestinal microbiota in IBS-like chronic visceral pain remains largely unclear. The purpose of this study is to investigate whether Folic Acid (FA) attenuated visceral pain and its possible mechanisms. Methods: Chronic visceral hyperalgesia was induced in rats by neonatal colonic inflammation (NCI). 16S rDNA analysis of fecal samples from human subjects and rats was performed. Patch clamp recording was used to determine synaptic transmission of colonic-related spinal dorsal horn. Results: Alpha diversity of intestinal flora was increased in patients with IBS, as well as the obviously increased abundance of Clostridiales order (a main bacteria producing hydrogen sulfide). The hydrogen sulfide content was positive correlation with visceral pain score in patients with IBS. Consistently, NCI increased Clostridiales frequency and hydrogen sulfide content in feces of adult rats. Notably, the concentration of FA was markedly decreased in peripheral blood of IBS patients compared with non-IBS human subjects. FA supplement alleviated chronic visceral pain and normalized the Clostridiales frequency in NCI rats. In addition, FA supplement significantly reduced the frequency of sEPSCs of neurons in the spinal dorsal horn of NCI rats. Conclusion: Folic Acid treatment attenuated chronic visceral pain of NCI rats through reducing hydrogen sulfide production from Clostridiales in intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.