The spleen contains multiple subsets of myeloid and dendritic cells (DC). DC are important antigen presenting cells (APC) which induce and control the adaptive immune response. They are cells specialized for antigen capture, processing and presentation to naïve T cells. However, DC are a heterogeneous population and each subset differs subtly in phenotype, function and location. Similarly, myeloid cell subsets can be distinguished which can also play an important role in the regulation of immunity. This review aims to characterize splenic subsets of DC and myeloid cells to better understand their individual roles in the immune response.
Bats are reservoirs for a large number of viruses which have potential to cause major human disease outbreaks, including the current coronavirus disease 2019 (COVID-19) pandemic. Major efforts are underway to understand bat immune response to viruses, whereas much less is known about their immune responses to bacteria. In this study, MR1-restricted T (MR1T) cells were detected through the use of MR1 tetramers in circulation and tissues of Pteropus alecto (Pa) bats. Pa MR1T cells exhibited weak responses to MR1-presented microbial metabolites at resting state. However, following priming with MR1-presented agonist they proliferated, upregulated critical transcription factors and cytolytic proteins, and gained transient expression of Th1/17-related cytokines and antibacterial cytotoxicity. Collectively, these findings show that the Pa bat immune system encompasses an abundant and functionally conserved population of MR1T cells with mucosal-associated invariant T-like characteristics, suggesting that MR1 and MR1T cells also play a significant role in bat immune defense.
The ability of bats to act as reservoir for viruses that are highly pathogenic to humans suggests unique properties and functional characteristics of their immune system. However, the lack of bat specific reagents, in particular antibodies, has limited our knowledge of bat's immunity. Here, we report a panel of cross-reactive antibodies against MHC-II, NK1.1, CD3, CD21, CD27, and immunoglobulin (Ig), that allows flow cytometry analysis of B, T and NK cell populations in two different fruit-eating bat species namely, Pteropus alecto and E. spelaea. Results confirmed predominance of T cells in the spleen and blood of bats, as previously reported by us. However, the percentages of B cells in bone marrow and NK cells in spleen varied greatly between wild caught P. alecto bats and E. spelaea colony bats, which may reflect inherent differences of their immune system or different immune status. Other features of bat B cells were investigated. A significant increase in sIg+ B cell population was observed in the spleen and blood from LPS-injected bats but not from poly I:C-injected bats, supporting T-independent polyclonal B cell activation by LPS. Furthermore, using an in vitro calcium release assay, P. alecto B cells exhibited significant calcium release upon cross-linking of their B cell receptor. Together, this work contributes to improve our knowledge of bat adaptive immunity in particular B cells.
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named “L-DC” since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.