Animals in captivity undergo a range of environmental changes from wild animals. An increasing number of studies show that captivity significantly affects the abundance and community structure of gut microbiota. The northern grass lizard (Takydromus septentrionalis) is an extensively studied lacertid lizard and has a distributional range covering the central and southeastern parts of China. Nonetheless, little is known about the gut microbiota of this species, which may play a certain role in nutrient and energy metabolism as well as immune homeostasis. Here, we examined the differences in the gut microbiota between two groups (wild and captive) of lizards through 16S rRNA sequencing using the Illumina HiSeq platform. The results demonstrated that the dominant microbial components in both groups consisted of Proteobacteria, Firmicutes, and Tenericutes. The two groups did not differ in the abundance of these three phyla. Citrobacter was the most dominant genus in wild lizards, while Morganella was the most dominant genus in captive lizards. Moreover, gene function predictions showed that genes at the KEGG pathway levels2 were more abundant in wild lizards than in captive lizards but, at the KEGG pathway levels1, the differences in gene abundances between wild and captive lizards were not significant. In summary, captivity exerted a significant impact on the gut microbial community structure and diversity in T. septentrionalis, and future work could usefully investigate the causes of these changes using a comparative approach.
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko japonicus) and captive conspecifics fed with mealworms (mealworm-fed geckos) and fruit flies (fly-fed geckos), aiming to examine the dietary and sexual correlates of the gut microbiota. We used 16S rRNA gene sequencing technology to determine the composition of the gut microbiota. The dominant phyla with a mean relative abundance higher than 10% were Verrucomicrobiota, Bacteroidota, and Firmicutes. Gut microbial community richness and diversity were higher in mealworm-fed geckos than in wild geckos. Neither community evenness nor beta diversity of gut microbiota differed among wild, mealworm-fed, and fly-fed geckos. The beta rather than alpha diversity of gut microbiota was sex dependent. Based on the relative abundance of gut bacteria and their gene functions, we concluded that gut microbiota contributed more significantly to the host’s metabolic and immune functions. A higher diversity of gut microbiota in mealworm-fed geckos could result from higher chitin content in insects of the order Coleoptera. This study not only provides basic information about the gut microbiota of G. japonicus but also shows that gut microbiota correlates with dietary habits and sex in the species.
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko japonicus) and captive conspecifics fed with mealworms (mealworm-fed geckos) and fruit flies (fly-fed geckos), aiming to examine dietary and sexual correlates of gut microbiota. We used the 16S rRNA gene sequencing technology to determine the composition of gut microbiota. The dominant phyla with a mean relative abundance higher than 10% were Verrucomicrobiota, Bacteroidota and Firmicutes. Gut microbial community richness was higher in mealworm-fed geckos than in fly-fed and wild geckos, and community diversity was higher in mealworm-fed geckos than in wild geckos. Neither alpha nor beta diversity of gut microbiota differed among wild, mealworm-fed and fly-fed geckos. The beta rather than alpha diversity of gut microbiota was sex-dependent. Based on the relative abundance of gut bacteria and its gene functions, we concluded that gut microbiota contributed more significantly to the host’s metabolic and immune functions. Higher diversity of gut microbiota in mealworm-fed geckos could result from higher chitin contents of insects of the order Coleoptera. This study not only provides basic information about the gut microbiota of G. japonicus, but also shows that gut microbiota correlates with dietary habit and sex in the species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.