The widespread availability of nano-enabled products in the global market may lead to the release of a substantial amount of engineered nanoparticles in the environment, which frequently display drastically different physiochemical properties than their bulk counterparts. The purpose of the study was to evaluate the impact of citrate-stabilised silver nanoparticles (AgNPs) on the plant Arabidopsis thaliana at three levels, physiological phytotoxicity, cellular accumulation and subcellular transport of AgNPs. The monodisperse AgNPs of three different sizes (20, 40 and 80 nm) aggregated into much larger sizes after mixing with quarter-strength Hoagland solution and became polydisperse. Immersion in AgNP suspension inhibited seedling root elongation and demonstrated a linear dose-response relationship within the tested concentration range. The phytotoxic effect of AgNPs could not be fully explained by the released silver ions. Plants exposed to AgNP suspensions bioaccumulated higher silver content than plants exposed to AgNO3 solutions (Ag(+) representative), indicating AgNP uptake by plants. AgNP toxicity was size and concentration dependent. AgNPs accumulated progressively in this sequence: border cells, root cap, columella and columella initials. AgNPs were apoplastically transported in the cell wall and found aggregated at plasmodesmata. In all the three levels studied, AgNP impacts differed from equivalent dosages of AgNO3.
The primary pollutant, radioactive iodine (I), has become a worldwide concern due to its serious ill effects of radiotoxicity on human health. Therefore, it is of great significance to develop novel adsorbents for effectively eliminating I from nuclear waste. Herein, we reported a Zr-based MOF adsorbent constructed by utilizing pyridine-containing pyridine-dicarboxylic acid (PYDC) as organic ligands (UiO-66-PYDC) as well as active sites for the efficient removal of I. UiO-66-PYDC MOFs were synthesized by a hydrothermal strategy and featured good chemical and thermal stabilities, endowing them with the ability to work in harsh environments. The abundant and inherent pyridine moieties in the developed adsorbent worked as active adsorption sites to capture I. The correlation between the most significant parameters such as the contact time, adsorbate concentration, and reusability was optimized, and the interaction mechanism between I and UiO-66-PYDC was investigated in detail. As for the current adsorbent, a pseudo-second order rate equation was used to explain the removal kinetics, and the Langmuir model exhibited a better fit to the adsorption isotherm than the Freundlich model. Thanks to the strong affinity of PYDC ligands to I and high porosity, the adsorption capacities of UiO-66-PYDC for I could reach as high as 1250 mg g, which was much higher than those of many other reported MOFs. Additionally, the UiO-66-PYDC MOFs exhibited excellent renewable adsorption properties, prefiguring their great promise as green adsorbents for I removal in nuclear waste management.
We fabricated InGaN/GaN nanorod light emitting diode (LED) arrays using nanosphere lithography for nanorod formation, PECVD (plasma enhanced chemical vapor deposition) grown SiO(2) layer for sidewall passivation, and chemical mechanical polishing for uniform nanorod contact. The nano-device demonstrates a reverse current 4.77nA at -5V, an ideality factor 7.35, and an optical output intensity 6807mW/cm(2) at the injection current density 32A/cm(2) (20mA). Moreover, the investigation of the droop effect for such a nanorod LED array reveals that junction heating is responsible for the sharp decrease at the low current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.