Spontaneous blinking is one of the most frequent human behaviours. While attentionally guided blinking may benefit human survival, the function of spontaneous frequent blinking in cognitive processes is poorly understood. To model human spontaneous blinking, we proposed a leaky integrate-and-fire model with a variable threshold which is assumed to represent physiological fluctuations during cognitive tasks. The proposed model is capable of reproducing bimodal, normal, and widespread peak-less distributions of inter-blink intervals as well as the more common popular positively skewed distributions. For bimodal distributions, the temporal positions of the two peaks depend on the baseline and the amplitude of the fluctuating threshold function. Parameters that reproduce experimentally derived bimodal distributions suggest that relatively slow oscillations (0.11–0.25 Hz) govern blink elicitations. The results also suggest that changes in blink rates would reflect fluctuations of threshold regulated by human internal states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.