Members of the genus Shewanella inhabit various environments; they are capable of synthesizing various types of low-melting-point fatty acids, including monounsaturated fatty acids (MUFA) and branched-chain fatty acids (BCFA) with and without eicosapentanoic acid (EPA). The genes involved in fatty acid synthesis in 15 whole-genome-sequenced Shewanella strains were identified and compared. A typical type II fatty acid synthesis pathway in Shewanella was constructed. A complete EPA synthesis gene cluster was found in all of the Shewanella genomes, although only a few of them were found to produce EPA. The roles and regulation of fatty acids synthesis in Shewanella were further elucidated in the Shewanella piezotolerans WP3 response to different temperatures and pressures. The EPA and BCFA contents of WP3 significantly increased when it was grown at low temperature and/or under high pressure. EPA, but not MUFA, was determined to be crucial for its growth at low temperature and high pressure. A gene cluster for a branched-chain amino acid ABC transporter (LIV-I) was found to be upregulated at low temperature. Combined approaches, including mutagenesis and an isotopic-tracer method, revealed that the LIV-I transporter played an important role in the regulation of BCFA synthesis in WP3. The LIV-I transporter was identified only in the cold-adapted Shewanella species and was assumed to supply an important strategy for Shewanella cold adaptation. This is the first time the molecular mechanism of BCFA regulation in bacteria has been elucidated.
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.Nearly three-quarters of the Earth's surface area is covered by ocean, the average depth of which is 3800 m, implying that the vast majority of our planet comprises deep-sea environments. The deep sea is one of the most mysterious and unexplored environments on the Earth, and it supports diverse microbial communities that play important roles in biogeochemical cycles [1]. The deep sea is also recognised as an extreme environment, as it is characterised by the absence of sunlight and the presence of predominantly low temperatures and high hydrostatic pressures, and these environmental conditions become even more challenging in particular habitats, such as deep-sea hydrothermal vents with their extremely high temperatures of >400 • C, deep hypersaline anoxic basins (DHABs) with their extremely high salinities and abysses of up to 11 km depth with their extremely high pressures.Deep-sea extremophiles are living organisms that can survive and proliferate in deep-sea environments that have extreme physical (pressure and temperature) and geochemical (pH, salinity and redox potential) conditions that are lethal to other organisms. The majority of deep-sea extremophiles belong to the prokaryotes, which are microorganisms in the domains of Archaea and Bacteria [2,3].These extremophilic microorganisms are functionally diverse and widely distributed in taxonomy [4], and they are classified into thermophiles (55 • C to 121 • C), psychrophiles (−2 • C to 20 • C), halophiles (2-5 M NaCl or KCl), piezophiles (>500 atmospheres), alkalophiles (pH > 8), acidophiles (pH < 4) and metalophiles (high concentrations of metals, e.g., copper, zinc, cadmium and arsenic) according to the extreme environments in which they grow and the extreme conditions they can tolerate. Ma...
Despite being the world’s third largest ocean, the Indian Ocean is one of the least studied and understood with respect to microbial diversity as well as biogeochemical and ecological functions. In this study, we investigated the microbial community and its metabolic potential for nitrogen (N) acquisition in the oligotrophic surface waters of the Indian Ocean using a metagenomic approach. Proteobacteria and Cyanobacteria dominated the microbial community with an average 37.85 and 23.56% of relative abundance, respectively, followed by Bacteroidetes (3.73%), Actinobacteria (1.69%), Firmicutes (0.76%), Verrucomicrobia (0.36%), and Planctomycetes (0.31%). Overall, only 24.3% of functional genes were common among all sampling stations indicating a high level of gene diversity. However, the presence of 82.6% common KEGG Orthology (KOs) in all samples showed high functional redundancy across the Indian Ocean. Temperature, phosphate, silicate and pH were important environmental factors regulating the microbial distribution in the Indian Ocean. The cyanobacterial genus Prochlorococcus was abundant with an average 17.4% of relative abundance in the surface waters, and while 54 Prochlorococcus genomes were detected, 53 were grouped mainly within HLII clade. In total, 179 of 234 Prochlorococcus sequences extracted from the global ocean dataset were clustered into HL clades and exhibited less divergence, but 55 sequences of LL clades presented more divergence exhibiting different branch length. The genes encoding enzymes related to ammonia metabolism, such as urease, glutamate dehydrogenase, ammonia transporter, and nitrilase presented higher abundances than the genes involved in inorganic N assimilation in both microbial community and metagenomic Prochlorococcus population. Furthermore, genes associated with dissimilatory nitrate reduction, denitrification, nitrogen fixation, nitrification and anammox were absent in metagenome Prochlorococcus population, i.e., nitrogenase and nitrate reductase. Notably, the de novo biosynthesis pathways of six different amino acids were incomplete in the metagenomic Prochlorococcus population and Prochlorococcus genomes, suggesting compensatory uptake of these amino acids from the environment. These results reveal the features of the taxonomic and functional structure of the Indian Ocean microbiome and their adaptive strategies to ambient N deficiency in the oligotrophic ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.