Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low-resource and zero-shot translation. Given there are thousands of languages in the world and some of them are very different, it is extremely burdensome to handle them all in a single model or use a separate model for each language pair. Therefore, given a fixed resource budget, e.g., the number of models, how to determine which languages should be supported by one model is critical to multilingual NMT, which, unfortunately, has been ignored by previous work. In this work, we develop a framework that clusters languages into different groups and trains one multilingual model for each cluster. We study two methods for language clustering: (1) using prior knowledge, where we cluster languages according to language family, and (2) using language embedding, in which we represent each language by an embedding vector and cluster them in the embedding space. In particular, we obtain the embedding vectors of all the languages by training a universal neural machine translation model. Our experiments on 23 languages show that the first clustering method is simple and easy to understand but leading to suboptimal translation accuracy, while the second method sufficiently captures the relationship among languages well and improves the translation accuracy for almost all the languages over baseline methods.
Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.
Image-to-image translation tasks have been widely investigated with Generative Adversarial Networks (GANs) and dual learning. However, existing models lack the ability to control the translated results in the target domain and their results usually lack of diversity in the sense that a fixed image usually leads to (almost) deterministic translation result. In this paper, we study a new problem, conditional image-to-image translation, which is to translate an image from the source domain to the target domain conditioned on a given image in the target domain. It requires that the generated image should inherit some domain-specific features of the conditional image from the target domain. Therefore, changing the conditional image in the target domain will lead to diverse translation results for a fixed input image from the source domain, and therefore the conditional input image helps to control the translation results. We tackle this problem with unpaired data based on GANs and dual learning. We twist two conditional translation models (one translation from A domain to B domain, and the other one from B domain to A domain) together for inputs combination and reconstruction while preserving domain independent features. We carry out experiments on men's faces from-to women's faces translation and edges to shoes&bags translations. The results demonstrate the effectiveness of our proposed method.
While data augmentation is an important trick to boost the accuracy of deep learning methods in computer vision tasks, its study in natural language tasks is still very limited. In this paper, we present a novel data augmentation method for neural machine translation.
While very deep neural networks have shown effectiveness for computer vision and text classification applications, how to increase the network depth of neural machine translation (NMT) models for better translation quality remains a challenging problem. Directly stacking more blocks to the NMT model results in no improvement and even reduces performance. In this work, we propose an effective two-stage approach with three specially designed components to construct deeper NMT models, which results in significant improvements over the strong Transformer baselines on WMT14 English→German and English→French translation tasks 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.