Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality worldwide, and there is currently no effective means to prevent it. Dioscin is naturally present in the dioscoreaceae plants and has antioxidant and anti-inflammatory effects. Here, we found that dioscin is protective against cisplatin-induced AKI. Pathological and ultrastructural observations revealed that dioscin reduced renal tissue lesions and mitochondrial damage. Furthermore, dioscin markedly suppressed reactive oxygen species and malondialdehyde levels in the kidneys of AKI rats and increased the contents of glutathione and catalase. In addition, dioscin dramatically reduced the number of apoptotic cells and the expression of pro-apoptotic proteins in rat kidneys and human renal tubular epithelial cells (HK2). Conversely, the protein levels of anti-ferroptosis including GPX4 and FSP1 in vivo and in vitro were significantly enhanced after dioscin treatment. Mechanistically, dioscin promotes the entry of Nrf2 into the nucleus and regulates the expression of downstream HO-1 to exert renal protection. However, the nephroprotective effect of dioscin was weakened after inhibiting Nrf2 in vitro and in vivo. In conclusion, dioscin exerts a reno-protective effect by decreasing renal oxidative injury, apoptosis and ferroptosis through the Nrf2/HO-1 signaling pathway, providing a new insight into AKI prevention.
Selenium (Se) is essential for human and animal health, but there have been few studies on the mechanisms of injury in dairy cows with Se deficiency. This study aimed to evaluate the effects of Se deficiency on myocardial injury in weaned calves. The Se-D group had significantly lower myocardial Se concentrations than the Se-C group. Histological analysis indicated that Se deficiency induced a large area of necrosis in the myocardium, accompanied by inflammatory changes. Se deficiency significantly decreased the expression of 10 of the 21 selenoprotein genes and increased the expression of SEPHS2. Furthermore, we found that oxidative stress occurred in the Se-D group by detection of redox-related indicators. Additionally, TUNEL staining showed that Se deficiency causes severe apoptosis in the myocardium, which was characterized by activating the exogenous apoptotic pathway and the mitochondrial apoptotic pathway. Se deficiency also induced necroptosis in the myocardium by upregulating MLKL, RIPK1, and RIPK3. Moreover, Se-deficient calves have severe inflammation in the myocardium. Se deficiency significantly reduced anti-inflammatory factor levels while increasing pro-inflammatory factor levels. We also found that the NF-κB pathway and MAPK pathway were activated in Se-deficient conditions. Our findings suggest that Se deficiency causes myocardial injury in weaned calves by regulating oxidative stress, inflammation, apoptosis, and necroptosis.
Selenium is an essential trace element for health that can only be obtained through food. However, the pathological processes of selenium deficiency in cattle have received little attention. This study investigated the effects of selenium deficiency on oxidative stress, apoptosis, inflammation, and necroptosis in the lungs of weaning calves compared with healthy calves as controls. The lung selenium content and the expression of 11 selenoproteins mRNA in selenium-deficient calves were substantially reduced compared with the controls. Pathological results showed engorged alveolar capillaries, thickened alveolar septa, and diffuse interstitial inflammation throughout the alveolar septa. The levels of GSH and T-AOC, as well as the CAT, SOD, and TrxR activities, were significantly decreased compared with healthy calves. MDA and H2O2 were significantly elevated. Meanwhile, the apoptosis activation in the Se-D group was validated. Next, in the Se-D group, several pro-inflammatory cytokines showed higher expression. Further research revealed that the lungs in the Se-D group experienced inflammation via hyperactive NF-κB and MAPK pathways. The high level of expression of c-FLIP, MLKL, RIPK1, and RIPK3 indicated that necroptosis also causes lung damage during selenium deficiency.
Background: Troxerutin is a flavonoid compound and possesses potential anti-cancer, antioxidant, and anti-inflammatory activities. Besides, cisplatin is one of the most widely used therapeutic agents, but the clinical uses of cisplatin are often associated with multiple side effects, among which nephrotoxicity is more common. Objective and design: This study explored the protective effects of troxerutin (150 mg kg−1 day−1 for 14 days) against cisplatin-induced kidney injury and the potential mechanism using Wistar rats as an experimental mammalian model. Results: We discovered that troxerutin could significantly alleviate cisplatin-induced renal dysfunction, such as increased levels of blood urea nitrogen and creatinine (P < 0.01), as well as improved abnormal renal tissue microstructure and ultrastructure. Additionally, troxerutin significantly decreased malondialdehyde (MDA), hydrogen peroxide (H2O2), NO, inducible nitric oxide synthase (iNOS) levels (P < 0.01), p-NF-κB p65/NF-κB p65, TNF-α, Pro-IL-1β, IL-6, B cell lymphoma-2 (Bcl-2)/Bcl-xl associated death promoter (Bad), Cytochrome C (Cyt C), Cleaved-caspase 9, Cleaved-caspase 3, and Cleaved-caspase 8 protein levels (P < 0.01) in the kidney tissues of cisplatin-treated rats; and increased superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) activities (P < 0.01), IL-10, Bcl-2 protein levels (P < 0.01). Conclusion: These results suggested that the underlying mechanism might be attributed to the regulation of Phosphoinositide 3 kinase/Protein kinase B (PI3K/AKT) pathway via enhancing MAP4 expression to attenuate cellular apoptosis, alleviating oxidative stress and inflammatory response.
Escherichia coli is one of the most common bacterial pathogens in cattle. Prophylactic vaccines are considered promising strategies with the potential to reduce the incidence of colibacillosis. Some studies suggested that bacterial ghosts may serve as a novel approach for preventing bacterial infections. However, the roles of administration route on vaccine immunogenicity and efficacy have not been investigated. In this study, the efficacy of vaccination via different immune routes in generating humoral and cellular immune response was compared through subcutaneous (SC), intramuscular (IM), and oral (O) administration in female BALB/c mice with bacterial ghosts prepared using wild type Escherichia coli isolates CE9, while phosphate buffer saline (PBS) and inactivated vaccines containing aluminum adjuvants (Killed) were used as control. Our results showed that the plasmid pBV220-E-aa-SNA containing E. coli was efficiently cleaved at 42°C with 94.8% positive ratio as assessed by colony counts. Transmission electron microscopy (TEM) confirmed bacteria retained intact surface structure while devoid of cytoplasmic component. We found that total IgG titers in killed, IM and SC groups showed significant increase on 7, 14, 21 and 28 days post-immunization. The IgA level of the IM group was higher than that of all other groups on the 28th day. Meanwhile, four experimental groups showed a significant difference in IgA levels compared with PBS control. In the IM group, an increase in the relative percentages of CD3+CD4+ T cells was accompanied by an increase in the relative percentages of splenic CD3+CD8+ T cells. In comparison with the inactivated vaccine, intramuscular CE9 ghosts immunization elicited higher levels of IL-1β, IL-2, IL-6 and IL-12. Subcutaneous and intramuscular immunizations were significantly associated with improved survival in comparison with oral route, traditional vaccine and the control. Pathologic assessment revealed that less severe tissue damage and inflammation were found in lung, kidney, and intestine of IM group compared with other groups. The results above demonstrate that immunization of Escherichia coli CE9 ghosts via intramuscular injection elicits a more robust antigen-specific immune response in mice to prevent the Escherichia coli infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.