As an essential data processing technology, cluster analysis has been widely used in various fields. In clustering, it is necessary to select appropriate measures to evaluate the similarity in the data. In this paper, firstly, a cluster center selection method based on the grey relational degree is proposed to solve the problem of sensitivity in initial cluster center selection. Secondly, combining the advantages of Euclidean distance, DTW distance, and SPDTW distance, a weighted distance measurement based on three kinds of reach is proposed. Then, it is applied to Fuzzy C-MeDOIDS and Fuzzy C-means hybrid clustering technology. Numerical experiments are carried out with the UCI datasets. The experimental results show that the accuracy of the clustering results is significantly improved by using the clustering method proposed in this paper. Besides, the method proposed in this paper is applied to the MUSIC INTO EMOTIONS and YEAST datasets. The clustering results show that the algorithm proposed in this paper can also achieve a better clustering effect when dealing with practical problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.