The utility of cell-free nucleic acids in monitoring cancer has been recognized by both scientists and clinicians. In addition to human transcripts, a fraction of cell-free nucleic acids in human plasma were proven to be derived from microbes and reported to have relevance to cancer. To obtain a better understanding of plasma cell-free RNAs (cfRNAs) in cancer patients, we profiled cfRNAs in ~300 plasma samples of 5 cancer types (colorectal cancer, stomach cancer, liver cancer, lung cancer, and esophageal cancer) and healthy donors (HDs) with RNA-seq. Microbe-derived cfRNAs were consistently detected by different computational methods when potential contaminations were carefully filtered. Clinically relevant signals were identified from human and microbial reads, and enriched Kyoto Encyclopedia of Genes and Genomes pathways of downregulated human genes and higher prevalence torque teno viruses both suggest that a fraction of cancer patients were immunosuppressed. Our data support the diagnostic value of human and microbe-derived plasma cfRNAs for cancer detection, as an area under the ROC curve of approximately 0.9 for distinguishing cancer patients from HDs was achieved. Moreover, human and microbial cfRNAs both have cancer type specificity, and combining two types of features could distinguish tumors of five different primary locations with an average recall of 60.4%. Compared to using human features alone, adding microbial features improved the average recall by approximately 8%. In summary, this work provides evidence for the clinical relevance of human and microbe-derived plasma cfRNAs and their potential utilities in cancer detection as well as the determination of tumor sites.
Background It is generally accepted that colorectal cancer (CRC) originates from cancer stem cells (CSCs), which are responsible for CRC progression, metastasis and therapy resistance. The high heterogeneity of CSCs has precluded clinical application of CSC-targeting therapy. Here, we aimed to characterize the stemness landscapes and screen for certain patients more responsive to immunotherapy. Methods Twenty-six stem cell gene sets were acquired from StemChecker database. Consensus clustering algorithm was applied for stemness subtypes identification on 1,467 CRC samples from TCGA and GEO databases. The differences in prognosis, tumor microenvironment (TME) components, therapy responses were evaluated among subtypes. Then, the stemness-risk model was constructed by weighted gene correlation network analysis (WGCNA), Cox regression and random survival forest analyses, and the most important marker was experimentally verified. Results Based on single-sample gene set enrichment analysis (ssGSEA) enrichments scores, CRC patients were classified into three subtypes (C1, C2 and C3). C3 subtype exhibited the worst prognosis, highest macrophages M0 and M2 infiltrations, immune and stromal scores, and minimum sensitivity to immunotherapies, but was more sensitive to drugs like Bosutinib, Docetaxel, Elesclomol, Gefitinib, Lenalidomide, Methotrexate and Sunitinib. The turquoise module was identified by WGCNA that it was most positively correlated with C3 but most negatively with C2, and five hub genes in turquoise module were identified for stemness model construction. CRC patients with higher stemness scores exhibited worse prognosis, more immunosuppressive components in TME and lower immunotherapeutic responses. Additionally, the model’s immunotherapeutic prediction efficacy was further confirmed from two immunotherapy cohorts (anti-PD-L1 in IMvigor210 cohort and anti-PD-1 in GSE78220 cohort). Mechanistically, Gene Set Enrichment Analysis (GSEA) results revealed high stemness score group was enriched in interferon gamma response, interferon alpha response, P53 pathway, coagulation, apoptosis, KRAS signaling upregulation, complement, epithelial–mesenchymal transition (EMT) and IL6-mediated JAK-STAT signaling gene sets. Conclusions Our study characterized three stemness-related subtypes with distinct prognosis and TME patterns in CRC patients, and a 5-gene stemness-risk model was constructed by comprehensive bioinformatic analyses. We suggest our stemness model has prospective clinical implications for prognosis evaluation and might facilitate physicians selecting prospective responders for preferential use of current immune checkpoint inhibitors.
Chemotherapy-related fatigue (CRF), one of the most severe adverse effects observed in cancer patients, has been theoretically related to oxidative stress, and antioxidant treatment might be one of the most valuable therapeutic approaches. However, there are still few effective pharmacological therapies. Yifei Sanjie pills (YFSJ), a classical formula used to treat lung cancer as complementary and alternative medicine, have been proved to alleviate CRF of lung cancer patients in clinical practices. However, the underlying mechanisms have not been clarified. In this study, our data showed that YFSJ alleviated CRF presented as reversing the decline of swimming time and locomotor activity induced by cisplatin (DDP). Moreover, YFSJ significantly reduces the accidence of mitophagy and mitochondrial damage and reduces apoptosis in skeletal muscle tissues caused by DDP. It probably works by decreasing the oxidative stress, inhibiting the activation of the AMPK/mTOR pathway, decreasing protein expression levels of Beclin1 and other autophagy-related proteins, and attenuating the activation of Cytochrome c (cyto. C), Cleaved Caspase-9 (c-Casp 9), and other apoptosis-related proteins. Furthermore, YFSJ enhanced DDP sensitivity by specifically promoting oxidative stress and activating apoptosis and autophagy in the tumor tissues of mice. It was also found that YFSJ reduced the loss of body weight caused by DDP, reversed the ascent of serum concentrations of alanine aminotransferase (ALT), aminotransferase (AST), and creatinine (CREA), increased the spleen index, and prolonged the survival time of mice. Taken together, these results revealed that YFSJ could alleviate CRF by reducing mitophagy and apoptosis induced by oxidative stress in skeletal muscle; these results also displayed the effects of YFSJ on enhancing chemotherapy sensitivity, improving quality of life, and prolonging survival time in lung cancer mice received DDP chemotherapy.
Inferior mesenteric artery lymph node metastasis was an independent predictive factor for high systemic recurrence. Low ligation of the IMA with IMA-LN dissection was not inferior to high ligation.
Colorectal cancer (CRC) is a severe threat to human health. Ginsenosides such as ginsenoside Rh4 have been widely studied in the antitumor field. Here, we investigated the antiproliferative activity and mechanism of Rh4 against CRC in vivo and in vitro. The CRC xenograft model showed that Rh4 inhibited xenograft tumor growth with few side effects ( p < 0.05 ). As determined by MTT colorimetric assays, Western blotting, and immunohistochemical analysis, Rh4 effectively inhibited CRC cell proliferation through autophagy and ferroptosis ( p < 0.05 ). Rh4 significantly upregulated autophagy and ferroptosis marker expression in CRC cells and xenograft tumor tissues in the present study ( p < 0.05 ). Interestingly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed Rh4-induced ferroptosis ( p < 0.05 ). Moreover, the autophagy inhibitor 3-methyladenine (3-MA) also reversed Rh4-induced ferroptosis ( p < 0.05 ). These results indicate that Rh4-induced ferroptosis is regulated via the autophagy pathway. In addition, Rh4 increased reactive oxygen species (ROS) accumulation, leading to the activation of the ROS/p53 signaling pathway ( p < 0.05 ). Transcriptome sequencing also confirmed this ( p < 0.05 ). Moreover, the ROS scavenger N-acetyl-cysteine (NAC) reversed the inhibitory effect of Rh4 on CRC cells ( p < 0.05 ). Therefore, this study proves that Rh4 inhibits cancer cell proliferation by activating the ROS/p53 signaling pathway and activating autophagy to induce ferroptosis, which provides necessary scientific evidence of the great anticancer potential of Rh4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.