This study aims to investigate physical characteristic, mechanical properties, and chemical composition of heat-treated bamboo scrimber. Specimens were heated at 50-230°C in laboratory conditions for 2 h. Test results of heat treatment samples were compared with the controls. Moisture absorption decreased slightly and then increased as temperature increased. It was probably due to changes of crystallinity and chemical structure. Mechanical properties varied greatly according to different temperature levels. Failure types reflected treatment temperature to some extent. Compressive strength reached a maximum when fiber bundles fractured neatly at 170°C, which is a turning point for physical, mechanical, and chemical properties under this heat treatment condition. Increasing mechanical properties of bamboo scrimber after heat treatment was due to solidification of phenolic resin.
Previous studies have proved that Larix kaempferi is a good material for preparing cross-laminated timber (CLT), but under bending shear stress, CLT made by Larix kaempferi is prone to the phenomenon of bonding face cracking, which seriously affects the shear performance of CLT. To solve this problem, this paper took Larix kaempferi as raw material, conducted experiments on the surface sanding conditions, gluing pressure and adhesive types of sawing timber, and explored the influence of these three factors on the bonding quality of CLT. The microscopic characteristics of the bonding layer were further studied. The results showed that for Larix kaempferi with a density of 0.68 g/cm3 used in this experiment, a high bonding pressure is required. Among the three cold curing adhesives selected in the experiment, emulsion polymer isocyanate (EPI) adhesive needs 1.5 MPa bonding pressure to ensure the bonding quality, while for polyurethane (PUR) and phenol resorcinol formaldehyde (PRF), 1.2 MPa can meet the need of adhesive pressure. This is concerned with the permeability of different adhesives under different pressures. The microscopic results of the bonding layer show that EPI adhesives have poor permeability, so it requires high bonding pressure. The influence of sanding surface of different sand-belt on block shear strength (BSS) and wood failure percentage (WFP) is not obvious, while the durability of bonding layer is better when sanding mesh number is 100. Hence, a high pressure should be used for CLT industrial production when the laminate density is higher, especially when the adhesive has poor permeability. Reasonable sanding surface treatment can be used in laminate surface treatment to improve the durability of CLT.
The objective of this study was to provide fundamental parameters for the utilization of bamboo scrimber in the building structure field as a green building material. Both static tensile and compressive tests were conducted on bamboo scrimber, with 180 specimens for compressive tests and 173 specimens for tensile tests. The normal and lognormal distributions were selected to fit the experimental data. The design values were calculated according to the Chinese allowable stress design method and ASTM D2915 (2003). The results showed that both tensile strength (UTS) and compressive strength (CS) parallel to the fiber of bamboo scrimber were significantly higher than those of wood and other bamboobased composite materials. Kolmogorov-Smirnov and chi-squared test results indicated that a lognormal distribution was a good fit for the UTS and CS except for the fitting result of UTS by the chi-squared test. The calculated design values of UTS and CS using ASTM D2915 (2003) were higher compared with those found using the Chinese allowable stress design method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.