This paper introduces TRANS-DOCK, a docking system for pin-based shape displays that enhances their interaction capabilities for both the output and input. By simply interchanging the transducer module, composed of passive mechanical structures, to be docked on a shape display, users can selectively switch between different configurations including display sizes, resolutions, and even motion modalities to allow pins moving in a linear motion to rotate, bend and inflate. We introduce a design space consisting of several mechanical elements and enabled interaction capabilities. We then explain the implementation of the docking system and transducer design components. Our implementation includes providing the limitations and characteristics of each motion transmission method as design guidelines. A number of transducer examples are then shown to demonstrate the range of interactivity and application space achieved with the approach of TRANS-DOCK. Potential use cases to take advantage of the interchangeability of our approach are discussed. Through this paper we intend to expand expressibility, adaptability and customizability of a single shape display for dynamic physical interaction. By converting arrays of linear motion to several types of dynamic motion in an adaptable and flexible manner, we advance shape displays to enable versatile embodied interactions. CCS CONCEPTS • Human-centered computing → Haptic devices; • Hardware → Haptic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.