Background To establish and validate a radiomics-based model for predicting liver cirrhosis in patients with hepatitis B virus (HBV) by using non-contrast computed tomography (CT). Methods This retrospective study developed a radiomics-based model in a training cohort of 144 HBV-infected patients. Radiomic features were extracted from abdominal non-contrast CT scans. Features selection was performed with the least absolute shrinkage and operator (LASSO) method based on highly reproducible features. Support vector machine (SVM) was adopted to build a radiomics signature. Multivariate logistic regression analysis was used to establish a radiomics-based nomogram that integrated radiomics signature and other independent clinical predictors. Performance of models was evaluated through discrimination ability, calibration and clinical benefits. An internal validation was conducted in 150 consecutive patients. Results The radiomics signature comprised 25 cirrhosis-related features and showed significant differences between cirrhosis and non-cirrhosis cohorts (P < 0.001). A radiomics-based nomogram that integrates radiomics signature, alanine transaminase, aspartate aminotransferase, globulin and international normalized ratio showed great calibration and discrimination ability in the training cohort (area under the curve [AUC]: 0.915) and the validation cohort (AUC: 0.872). Decision curve analysis confirmed the most clinical benefits can be provided by the nomogram compared with other methods. Conclusions Our developed radiomics-based nomogram can successfully diagnose the status of cirrhosis in HBV-infected patients, that may help clinical decision-making.
Introduction. Considering the narrow window of surgery, early diagnosis of liver cancer is still a fundamental issue to explore. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICCA) are considered as two different types of liver cancer because of their distinct pathogenesis, pathological features, prognosis, and responses to adjuvant therapies. Qualitative analysis of image is not enough to make a discrimination of liver cancer, especially early-stage HCC or ICCA. Methods. This retrospective study developed a radiomic-based model in a training cohort of 122 patients. Radiomic features were extracted from computed tomography (CT) scans. Feature selection was operated with the least absolute shrinkage and operator (LASSO) logistic method. The support vector machine (SVM) was selected to build a model. An internal validation was conducted in 89 patients. Results. In the training set, the AUC of the evaluation of the radiomics was 0.855 higher than for radiologists at 0.689. In the valuation cohorts, the AUC of the evaluation was 0.847 and the validation was 0.659, which indicated that the established model has a significantly better performance in distinguishing the HCC from ICCA. Conclusion. We developed a radiomic diagnosis model based on CT image that can quickly distinguish HCC from ICCA, which may facilitate the differential diagnosis of HCC and ICCA in the future.
To investigate the ability of CT-based radiomics signature for pre-and postoperatively predicting the early recurrence of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models. Institutional review board approved this study. Clinicopathological characteristics, contrast-enhanced CT images, and radiomics features of 125 IMCC patients (35 with early recurrence and 90 with non-early recurrence) were retrospectively reviewed. In the training set of 92 patients, preoperative model, pathological model, and combined model were developed by multivariate logistic regression analysis to predict the early recurrence (≤ 6 months) of IMCC, and the prediction performance of different models were compared using the Delong test. The developed models were validated by assessing their prediction performance in test set of 33 patients. Multivariate logistic regression analysis identified solitary, differentiation, energy- arterial phase (AP), inertia-AP, and percentile50th-portal venous phase (PV) to construct combined model for predicting early recurrence of IMCC [the area under the curve (AUC) = 0.917; 95% CI 0.840–0.965]. While the AUC of pathological model and preoperative model were 0.741 (95% CI 0.637–0.828) and 0.844 (95% CI 0.751–0.912), respectively. The AUC of the combined model was significantly higher than that of the preoperative model (p = 0.049) or pathological model (p = 0.002) in training set. In test set, the combined model also showed higher prediction performance. CT-based radiomics signature is a powerful predictor for early recurrence of IMCC. Preoperative model (constructed with homogeneity-AP and standard deviation-AP) and combined model (constructed with solitary, differentiation, energy-AP, inertia-AP, and percentile50th-PV) can improve the accuracy for pre-and postoperatively predicting the early recurrence of IMCC.
Background To establish and validate a radiomics-based model for staging liver fibrosis at contrast-enhanced CT images. Materials and methods This retrospective study developed two radiomics-based models (R-score: radiomics signature; R-fibrosis: integrate radiomic and serum variables) in a training cohort of 332 patients (median age, 59 years; interquartile range, 51–67 years; 256 men) with biopsy-proven liver fibrosis who underwent contrast-enhanced CT between January 2017 and December 2020. Radiomic features were extracted from non-contrast, arterial and portal phase CT images and selected using the least absolute shrinkage and selection operator (LASSO) logistic regression to differentiate stage F3–F4 from stage F0–F2. Optimal cutoffs to diagnose significant fibrosis (stage F2–F4), advanced fibrosis (stage F3–F4) and cirrhosis (stage F4) were determined by receiver operating characteristic curve analysis. Diagnostic performance was evaluated by area under the curve, Obuchowski index, calibrations and decision curve analysis. An internal validation was conducted in 111 randomly assigned patients (median age, 58 years; interquartile range, 49–66 years; 89 men). Results In the validation cohort, R-score and R-fibrosis (Obuchowski index, 0.843 and 0.846, respectively) significantly outperformed aspartate transaminase-to-platelet ratio (APRI) (Obuchowski index, 0.651; p < .001) and fibrosis-4 index (FIB-4) (Obuchowski index, 0.676; p < .001) for staging liver fibrosis. Using the cutoffs, R-fibrosis and R-score had a sensitivity range of 70–87%, specificity range of 71–97%, and accuracy range of 82–86% in diagnosing significant fibrosis, advanced fibrosis and cirrhosis. Conclusion Radiomic analysis of contrast-enhanced CT images can reach great diagnostic performance of liver fibrosis.
Background: Prediction models for the histological grade of hepatocellular carcinoma (HCC) remain unsatisfactory. The purpose of this study is to develop preoperative models to predict histological grade of HCC based on gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) radiomics. And to compare the performance between artificial neural network (ANN) and logistic regression model. Methods: A total of 122 HCCs were randomly assigned to the training set (n=85) and the test set (n=37). There were 242 radiomic features extracted from volumetric of interest (VOI) of arterial and hepatobiliary phases images. The radiomic features and clinical parameters [gender, age, alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), alanine aminotransferase (ALT), aspartate transaminase (AST)] were selected by permutation test and decision tree. ANN of arterial phase (ANN-AP), logistic regression model of arterial phase (LR-AP), ANN of hepatobiliary phase (ANN-HBP), logistic regression mode of hepatobiliary phase (LR-HBP), ANN of combined arterial and hepatobiliary phases (ANN-AP+HBP), and logistic regression model of combined arterial and hepatobiliary phases (LR-AP+HBP) were built to predict HCC histological grade. Those prediction models were assessed and compared. Results: ANN-AP and LR-AP were composed by AST and radiomic features based on arterial phase. ANN-HBP and LR-HBP were composed by AFP and radiomic features based on hepatobiliary phase. ANN-AP+HBP and LR-AP+HBP were composed by AST and radiomic features based on arterial and hepatobiliary phases. The prediction models could distinguish between high-grade tumors [Edmondson-Steiner (E-S) grade III and IV] and low-grade tumors (E-S grade I and II) in both training set and test set. In the test set,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.