Previous studies have shown that
Vibrio splendidus
infection causes mitochondrial damage in
Apostichopus japonicus
coelomocytes, leading to the production of excessive reactive oxygen species (ROS) and irreversible apoptotic cell death. Emerging evidence suggests that mitochondrial autophagy (mitophagy) is the most effective method for eliminating damaged mitochondria and ROS, with choline dehydrogenase (CHDH) identified as a novel mitophagy receptor that can recognize non-ubiquitin damage signals and microtubule-associated protein 1 light chain 3 (LC3) in vertebrates. However, the functional role of CHDH in invertebrates is largely unknown. In this study, we observed a significant increase in the mRNA and protein expression levels of
A. japonicus
CHDH (AjCHDH) in response to
V. splendidus
infection and lipopolysaccharide (LPS) challenge, consistent with changes in mitophagy under the same conditions. Notably, AjCHDH was localized to the mitochondria rather than the cytosol following
V. splendidus
infection. Moreover,
AjCHDH
knockdown using siRNA transfection significantly reduced mitophagy levels, as observed through transmission electron microscopy and confocal microscopy. Further investigation into the molecular mechanisms underlying CHDH-regulated mitophagy showed that AjCHDH lacked an LC3-interacting region (LIR) for direct binding to LC3 but possessed a FB1 structural domain that binds to SQSTM1. The interaction between AjCHDH and SQSTM1 was further confirmed by immunoprecipitation analysis. Furthermore, laser confocal microscopy indicated that SQSTM1 and LC3 were recruited by AjCHDH in coelomocytes and HEK293T cells. In contrast,
AjCHDH
interference hindered SQSTM1 and LC3 recruitment to the mitochondria, a critical step in damaged mitochondrial degradation. Thus,
AjCHDH
interference led to a significant increase in both mitochondrial and intracellular ROS, followed by increased apoptosis and decreased coelomocyte survival. Collectively, these findings indicate that AjCHDH-mediated mitophagy plays a crucial role in coelomocyte survival in
A. japonicus
following
V. splendidus
infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.