Plasmonics, especially the localized surface plasmon resonance (LSPR) in non-noble metal bismuth nanoparticles (Bi NPs), and its spectral features and applications have stimulated increasing research interest in recent years. However, the lack of mature methods to prepare Bi NPs with a well-controlled size and/or shape significantly limits the experimental investigations concerning the LSPR optical properties. Herein, we realize the size-tunable synthesis of nearly monodisperse spherical Bi NPs through a thiolate pyrolysis reaction in solution. The instantaneous thermolysis of a layered molecular intermediate, bismuth dodecanethiolate [Bi(SC12H25)3], results in a classical LaMer mechanism for the nucleation and growth of Bi NPs, allowing for a precise size control from 65 to 205 nm in the average diameter. The diameter tunability enables a systematic study on the size dependence of LSPR optical properties of Bi NPs, and we observe rich ultraviolet–visible–near-infrared spectral responses arising from the LSPR absorption and scattering of Bi NPs as their size varies, which will greatly benefit the light harvesting and manipulation in the solar spectrum. Furthermore, we find that a complete oxidation occurs to Bi NPs under air flow at the temperature when they melt and accordingly generate metastable tetragonal-phase β-Bi2O3 NPs that show an optical band gap of 2.15 eV and interesting temperature-dependent β → α → δ → (γ + β) polymorphic transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.