Neutrophil extracellular traps (NETs) are complexes of decondensed DNA fibers and antimicrobial peptides that are released by neutrophils and play important roles in many noninfectious diseases, such as cystic fibrosis, systemic lupus erythematosus, diabetes, and cancer. Recently, the formation of NETs has been detected in many central nervous system diseases and is thought to play different roles in the occurrence and development of these diseases. Researchers have detected NETs in acute ischemic stroke thrombi, and these NETs are thought to promote coagulation and thrombosis. NETs in ischemic brain parenchyma were identified as the cause of secondary nerve damage. High levels of NETs were also detected in grade IV glioma tissues, where NETs were involved in the proliferation and invasion of glioma cells by activating a signaling pathway. Extracellular web-like structures have also recently been observed in mice with traumatic brain injury (TBI), and it was hypothesized that NETs contribute to the development of edema after TBI. This article reviews the effect of NETs on multiple diseases that affect the CNS and explores their clinical application prospects.
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Evidence indicates that neutrophil has promoted inflammation in several central nervous system diseases. However, whether the peripheral blood levels of neutrophils are associated with the functional outcome after subarachnoid hemorrhage and its potential mechanism remain unclear. In this study, we showed that neutrophil levels in peripheral blood were higher in patients with subarachnoid hemorrhage ( P < 0.001) than in healthy subjects. Neutrophil levels were positively associated with Hunt and Hess grade ( P < 0.001) and modified Rankin Scale scores at 3 months after SAH ( P = 0.008). In terms of the mechanism, neutrophil extracellular traps markedly increased the proinflammatory subtype transition of microglia. After treatment with DNAse I, the proinflammatory subtype transition of microglia involving CD16 positive and IL-1β positive microglia was limited ( P < 0.05). This mechanism was also verified in vitro . These results indicate that the existence of neutrophil extracellular traps, released from neutrophils after subarachnoid hemorrhage, can shift microglia toward a more proinflammatory phenotype and contribute to neuroinflammation and poor outcome in subarachnoid hemorrhage.
BackgroundThe relationship between neutrophil to lymphocyte ratio (NLR) and poor outcome of aneurysmal subarachnoid hemorrhage (aSAH) is controversial. We aim to evaluate the relationship between NLR on admission and the poor outcome after aSAH.MethodPart I: Retrospective analysis of aSAH patients in our center. Baseline characteristics of patients were collected and compared. Multivariate analysis was used to evaluate parameters independently related to poor outcome. Receiver operating characteristic (ROC) curve analysis was used to determine the best cut-off value of NLR. Part II: Systematic review and meta-analysis of relevant literature. Related literature was selected through the database. The pooled odds ratio (OR) and corresponding 95% confidence interval (CI) were calculated to evaluate the correlation between NLR and outcome measures.ResultsPart I: A total of 240 patients with aSAH were enrolled, and 52 patients had a poor outcome. Patients with poor outcome at 3 months had a higher admission NLR, Hunt & Hess score, Barrow Neurological Institute (BNI) scale score, Subarachnoid Hemorrhage Early Brain Edema Score (SEBES), and proportion of hypertension history. After adjustment, NLR at admission remained an independent predictor of poor outcome in aSAH patients (OR 0.76, 95% CI 0.69-0.83; P < 0.001). The best cut-off value of NLR in ROC analysis is 12.03 (area under the curve 0.805, 95% CI 0.735 - 0.875; P < 0.001). Part II: A total of 16 literature were included. Pooled results showed that elevated NLR was significantly associated with poor outcome (OR 1.31, 95% CI 1.14-1.49; P < 0.0001) and delayed cerebral ischemia (DCI) occurrence (OR 1.32, 95% CI 1.11-1.56; P = 0.002). The results are more reliable in large sample sizes, low NLR cut-off value, multicenter, or prospective studies.ConclusionElevated NLR is an independent predictor of poor outcome and DCI occurrence in aSAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.