Minimax optimization, which is actively involved in numerous robust design problems, aims at pursuing the solutions with best worst-case performances. Although considerable research has been devoted to the development of minimax optimization algorithms, there still exist several fundamental limitations for existing approaches, e.g., restriction on problem types, excessively high computational cost, and low optimization efficiency. To address these issues, a minimax differential evolution algorithm is proposed in this paper. First, a novel bottom-boosting scheme enables the algorithm to identify the promising solutions in a reliable yet efficient manner. After that, a partial-regeneration strategy together with a new mutation operator contribute to an in-depth exploration over solution space. Finally, a proper integration of these newly proposed mechanisms leads to an algorithmic structure that can appropriately handle various types of problems. Empirical comparison with seven famous methods demonstrates the statistical superiority of the proposed algorithm. Successful applications in two open problems of robust design further validate the effectiveness of the new approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.