As colorectal cancer is the fourth leading cause of cancer‐related death worldwide, colorectal cancer therapy requires new strategies for improved therapeutic effects. Recently, nanodrug carriers have emerged to weaken the systemic toxicity of chemotherapy drugs and strengthen the treatment effectiveness against colorectal cancer. In this report, ferulic acid, a plant derivative, is polycondensed into poly(ferulic acid) (PFA) for the first time to serve as an excellent drug carrier with anticancer performance. PFA self‐assembles into nanoparticles by nanoprecipitation, and the screened PFA nanoparticles (NPs) have a diameter of ≈100 nm and possess a reasonable drug‐loading capacity of ≈8.3% of paclitaxel (PTX). Evaluation of CT26 cells and a corresponding mouse model indicates remarkable inhibition of colon cancer with PTX‐loaded PFA nanoparticles (PFA@PTX NPs) treatment both in vitro and in vivo. Meanwhile, evaluation of blank PFA NPs in a tumor mouse model also shows tumor inhibition, confirming that PFA itself has an anticancer effect in vivo. Overall, the novel nanoparticles based on poly(ferulic acid) can not only effectively deliver chemodrugs but also provide additional anticancer therapeutic effects, providing a promising platform for clinical colon cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.