OBJECTIVES To assess lifestyle factors including physical activity, smoking, alcohol consumption, and dietary habits in men and women with exceptional longevity. DESIGN Retrospective cohort study. SETTING A cohort of community-dwelling Ashkenazi Jewish individuals with exceptional longevity defined as survival and living independently at age 95 and older. PARTICIPANTS Four hundred seventy-seven individuals (mean 97.3 ± 2.8, range 95–109; 74.6% women) and a subset of participants of the National Health and Nutrition Examination Survey (NHANES) I (n = 3,164) representing the same birth cohort as a comparison group. MEASUREMENTS A trained interviewer administrated study questionnaires to collect information on lifestyle factors and collected data on anthropometry. RESULTS People with exceptional longevity had similar mean body mass index (men, 25.4 ± 2.8 kg/m2 vs 25.6 ± 4.0 kg/m2, P = .63; women, 25.0 ± 3.5 kg/m2 vs 24.9 ± 5.4 kg/m2; P = .90) and a similar proportion of daily alcohol consumption (men, 23.9 vs 22.4, P = .77; women, 12.1 vs 11.3, P = .80), of regular physical activity (men: 43.1 vs 57.2; P = .07; women: 47.0 vs 44.1, P = .76), and of a low-calorie diet (men: 20.8 vs 21.1, P = .32; women: 27.3 vs 27.1, P = .14) as the NHANES population. CONCLUSION People with exceptional longevity are not distinct in terms of lifestyle factors from the general population, suggesting that people with exceptional longevity may interact with environmental factors differently than others. This requires further investigation.
The link between thyroid dysfunction and cardiovascular diseases has been recognized for more than 100 years. Although overt hypothyroidism leads to impaired cardiac function and possibly heart failure, the cardiovascular consequences of borderline low thyroid function are not clear. Establishment of a suitable animal model would be helpful. In this study, we characterized a rat model to study the relationship between cardiovascular function and graded levels of thyroid activity. We used rats with surgical thyroidectomy and subcutaneous implantation of slow release pellets with three different T(4) doses for 3 wk. In terminal experiments, cardiac function was evaluated by echocardiograms and hemodynamics. Myocardial arteriolar density was also quantified morphometrically. Thyroid hormone levels in serum and heart tissue were determined by RIA assays. Thyroidectomy alone led to cardiac atrophy, severe cardiac dysfunction, and a dramatic loss of arterioles. The low T(4) dose normalized serum T(3) and T(4) levels, but cardiac tissue T(3) and T(4) remained below normal. Low-dose T(4) failed to prevent cardiac atrophy or restore cardiac function and arteriolar density to normal values. All cardiac function parameters and myocardial arteriolar density were normalized with the middle dose of T(4), whereas the high dose produced hyperthyroidism. Our results show that thyroid hormones are important regulators of cardiac function and myocardial arteriolar density. This animal model will be useful in studying the pathophysiological consequences of mild thyroid dysfunction. Results also suggest that cardiac function may provide valuable supplemental information in proper diagnosis of mild thyroid conditions.
Low thyroid hormone (TH) function has been linked to impaired coronary blood flow, reduced density of small arterioles, and heart failure. Nonetheless, little is known about the mechanisms by which THs regulate coronary microvascular remodeling. The current study examined the initial cellular events associated with coronary remodeling induced by triiodothyronine (T3) in hypothyroid rats. Rats with established hypothyroidism, eight weeks after surgical thyroidectomy (TX), were treated with T3 for 36 or 72 hours. The early effects of T3 treatment on coronary microvasculature were examined morphometrically. Gene expression changes in the heart were assessed by quantitative PCR Array. Hypothyroidism resulted in arteriolar atrophy in the left ventricle. T3 treatment rapidly induced small arteriolar muscularization and, within 72 hours, restored arteriolar density to control levels. Total length of the capillary network was not affected by TX or T3 treatment. T3 treatment resulted in the coordinate regulation of Angiopoietin 1 and 2 expression. The response of Angiopoietins was consistent with vessel enlargement. In addition to the well known effects of THs on vasoreactivity, these results suggest that THs may affect function of small resistance arteries by phenotypic remodeling of vascular smooth muscle cells (VSMC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.