Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-step melt compounding procedure with the aid of a maleated polyethylene (MAPE). The use of 2% clay decreased the crystallization temperature (T c ), crystallization rate, and the crystallinity level of the HDPE/pine composites, but did not change the crystalline thickness. When 2% MAPE was added, the crystallization rate increased, but the crystallinity level was further lowered. The flexural and tensile strength of HDPE/ pine composites increased about 20 and 24%, respectively, with addition of 1% clay, but then decreased slightly as the clay content increased to 3%. The tensile modulus and tensile elongation were also increased with the addition of 1% clay. The impact strength was lowered about 7% by 1% clay, but did not decrease further as more clay was added. The MAPE improved the state of dispersion in the composites. Moisture content and thickness swelling of the HDPE/pine composites was reduced by the clay, but the clay did not improve the composite thermal stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.