High-performance liquid chromatography–mass spectrometry (LC–MS) was used for comprehensive metabolomic fingerprinting of vanilla fruits prepared from the curing process. In this study, the metabolic changes of vanilla pods and vanilla beans were characterized using MS-based metabolomics to elucidate the biosynthesis of vanillin. The vanilla pods were significantly different from vanilla beans. Seven pathways of vanillin biosynthesis were constructed, namely, glucovanillin, glucose, cresol, capsaicin, vanillyl alcohol, tyrosine, and phenylalanine pathways. Investigations demonstrated that glucose, cresol, capsaicin, and vanillyl alcohol pathway were detected in a wide range of distribution in microbial metabolism. Thus, microorganisms might have participated in vanillin biosynthesis during vanilla curing. Furthermore, the ion strength of glucovanillin was stable, which indicated that glucovanillin only participated in the vanillin biosynthesis during the curing of vanilla.Electronic supplementary materialThe online version of this article (doi:10.1186/s13568-017-0413-2) contains supplementary material, which is available to authorized users.
This paper compares the differences in metabolites of vanilla beans at five different curing stages. Key vanilla flavors, vanillin precursors and main enzymes during the curing process of Hainan vanilla beans were also analyzed. Hundreds of metabolites were detected based on metabolic analyses of a widely targeted metabolome technique, compared with blanched vanilla beans (BVB), sweating vanilla beans (SVB) and drying vanilla beans (DVB), the total peak intensity of cured vanilla beans (CVB) is on the rise. The score plots of principal component analysis indicated that the metabolites were generally similar at the same curing stages, but for the different curing stages, they varied substantially. During processing, vanillin content increased while glucovanillin content decreased, and vanillic acid was present in sweating beans, but its content was reduced in drying beans. Both p-hydroxybenzaldehyde and p-hydroxybenzoic acid showed the maximum contents in cured beans. Ferulic acid was mainly produced in drying beans and reduced in cured beans. p-coumaric acid increased during the curing process. Vanillyl alcohol in drying beans (0.22%) may be formed by the hydrolysis of glucoside, whose conversion into vanillin may explain its decrease during the curing stage. β-Glucosidase enzymatic activity was not detected in blanched and sweating beans, but was observed after drying. Peroxidase activity decreased during curing by 94% in cured beans. Polyphenol oxidase activity was low in earlier stages, whereas cellulase activity in processed beans was higher than in green beans, except for cured beans. This study contributes to revealing the formation of flavor components and the biosynthesis pathway of vanillin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.