Since Penn et al. first discovered the oriented attachment growth of crystals, the oriented attachment mechanism has now become a major research focus in the crystal field, and extensive efforts have been carried out over the past decade to systematically investigate the growth mechanism and the statistical kinetic models. However, most of the work mainly focuses on the experimental results on the oriented attachment growth. In contrast to the previous reviews, our review provides an overview of the recent theoretical advances in oriented attachment kinetics combined with experimental evidences. After a brief introduction to the van der Waals interaction and Coulombic interaction in a colloidal system, the correlation between the kinetic models of oriented attachment growth and the interactions is then our focus. The impact of in situ experimental observation techniques on the study of oriented attachment growth is examined with insightful examples. In addition, the advances in theoretical simulations mainly investigating the thermodynamic origin of these interactions at the atomic level are reviewed. This review seeks to understand the oriented attachment crystal growth from a kinetic point of view and provide a quantitative methodology to rationally design an oriented attachment system with pre-evaluated crystal growth parameters.
Reversible protonic ceramic electrochemical cells (R-PCECs) are a promising option for efficient and low-cost generation of electricity and hydrogen. Commercialization of R-PCECs, however, hinges on the development of highly active and robust air electrodes. Here, we report an air electrode consisting of PrBa 0.8 Ca 0.2 Co 2 O 5+δ and in situ exsolved BaCoO 3−δ nanoparticles (PBCC−BCO) that shows minimal polarization resistance (∼0.24 Ω cm 2 at 600 °C) and high stability when exposed to humidified air with 3−50% H 2 O. An R-PCEC utilizing PBCC-BCO demonstrates remarkable performances at 600 °C: achieving a peak power density of 1.06 W cm −2 in the fuel cell mode and a current density of 1.51 A cm −2 at 1.3 V in an electrolysis mode. More importantly, the R-PCECs demonstrate an exceptionally high durability over 1833 h of continuous operation in the electrolysis mode. This work offers an efficient approach to design of high-performance and durable electrodes for R-PCECs.
The commercialization of reversible protonic ceramic electrochemical cells is hindered by the lack of highly active and durable air electrodes exposed to high concentration of steam under operating conditions. Here, findings that dramatically enhance the electrocatalytic activity and stability of a conventional (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ (LSCF) air electrode by a multiphase catalyst coating composed of a conformal Pr1−xBaxCoO3−δ thin film and exsolved BaCoO3−δ nanoparticles, are reported. At 600 °C, the catalyst coating decreases the polarization resistance of the LSCF air electrode by a factor of 25 (from 1.09 to 0.043 Ω cm2) in air and the degradation rate by two orders of magnitude (from 1.0 × 10−2 to 1.8 × 10−4 Ω cm2 h−1 in humidified air with 30 vol% H2O). Further, a single cell with the catalyst‐coated LSCF air electrode at 600 °C demonstrates a high peak power density of 1.04 W cm−2 in the fuel cell mode and a high current density of 1.82 A cm−2 at 1.3 V in the electrolysis mode. The significantly enhanced performance of the LSCF air electrode is attributed mainly to the high rate of surface oxygen exchange, fast surface proton diffusion, and the rapid H2O and O2 dissociation on the catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.