<abstract><p>Statistical methodologies have broader applications in almost every sector of life including education, hydrology, reliability, management, and healthcare sciences. Among these sectors, statistical modeling and predicting data in the healthcare sector is very crucial. In this paper, we introduce a new method, namely, a new extended exponential family to update the distributional flexibility of the existing models. Based on this approach, a new version of the Weibull model, namely, a new extended exponential Weibull model is introduced. The applicability of the new extended exponential Weibull model is shown by considering two data sets taken from the health sciences. The first data set represents the mortality rate of the patients infected by the coronavirus disease 2019 (COVID-19) in Mexico. Whereas, the second set represents the mortality rate of COVID-19 patients in Holland. Utilizing the same data sets, we carry out forecasting using three machine learning (ML) methods including support vector regression (SVR), random forest (RF), and neural network autoregression (NNAR). To assess their forecasting performances, two statistical accuracy measures, namely, root mean square error (RMSE) and mean absolute error (MAE) are considered. Based on our findings, it is observed that the RF algorithm is very effective in predicting the death rate of the COVID-19 data in Mexico. Whereas, for the second data, the SVR performs better as compared to the other methods.</p></abstract>
Nowadays, researchers in applied sectors are highly motivated to propose and study new generalizations of the existing distributions to provide the best fit to data. To provide a close fit to data in numerous sectors, a series of new distributions have been proposed. In this study, we propose a new family called the new generalized- X (for short, “NG- X ”) family of distributions. Based on the NG- X method, a novel modification of the Weibull model called the new generalized-Weibull (for short, “NG-Weibull”) distribution is studied. The heavy-tailed characteristics of the NG- X distributions are derived. The maximum likelihood estimators of the NG- X distributions are also obtained. Based on the special case (i.e., NG-Weibull) of the NG- X family, a simulation study is provided. The practical performance of the new NG-Weibull model is assessed by analyzing the COVID-19 data set. The fitting results of the NG-Weibull model are compared with three other competing models. Based on certain statistical measures, it is observed that the NG-Weibull model is the best competitive model.
Auditory analysis is an essential method that is used to recognize voice identity in court investigations. However, noise will interfere with auditory perception. Based on this, we selected white noise, pink noise, and speech noise in order to design and conduct voice identity perception experiments. Meanwhile, we explored the impact of the noise type and frequency distribution on voice identity perception. The experimental results show the following: (1) in high signal-to-noise ratio (SNR) environments, there is no significant difference in the impact of noise types on voice identity perception; (2) in low SNR environments, the perceived result of speech noise is significantly different from that of white noise and pink noise, and the interference is more obvious; (3) in the speech noise with a low SNR (−8 dB), the voice information contained in the high-frequency band of 2930~6250 Hz is helpful for achieving accuracy in voice identity perception. These results show that voice identity perception in a better voice transmission environment is mainly based on the acoustic information provided by the low-frequency and medium-frequency bands, which concentrate most of the energy of the voice. As the SNR gradually decreases, a human’s auditory mechanism will automatically expand the receiving frequency range to obtain more effective acoustic information from the high-frequency band. Consequently, the high-frequency information ignored in the objective algorithm may be more robust with respect to identity perception in our environment. The experimental studies not only evaluate the quality of the case voice and control the voice recording environment, but also predict the accuracy of voice identity perception under noise interference. This research provides the theoretical basis and data support for applying voice identity perception in forensic science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.