We study a class of fractional predator-prey systems with Holling II functional response. A unique positive solution of this system is obtained. In order to prove the asymptotical stability of positive equilibrium for this system, we study the Lyapunov stability theory of a fractional system.
In order to deal with non-differentiable functions, a modification of the Riemann–Liouville definition is recently proposed which appears to provide a framework for a fractional calculus which is quite parallel with classical calculus. Based on these new results, we study on the fractional SIR model in this paper. First, we give the general solution of the fractional differential equation. And then a unique global positive solution of the SIR model is obtained. Furthermore, we get the Lyapunov stability theory. By using this stability theory, the asymptotic stability of the positive solution is analyzed.
We formulate a stochastic SIS epidemic model with vaccination by introducing a Lévy noise and regime switching into the epidemic model. First, we prove that the stochastic model admits a unique global positive solution. Moreover, we study the asymptotic behavior of the stochastic regime switching SIS model with vaccination driven by Lévy noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.